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Abstract

Huntington’s disease (HD) is a neurodegenerative pathology associated 
with an increased number of polyglutamine repeats (polyQ) within the mutant 
huntingtin protein (mHtt). Expanded polyQ repeats increase the propensity of 
the mHtt protein to form aggregates, resulting in the subsequent formation of 
larger, insoluble, amyloid-like aggregates termed inclusion bodies. Over the 
years several studies have identified perturbation of endoplasmic reticulum 
homeostasis (ER stress) as a determinant of polyQ toxicity in various HD 
models, from yeast cells to patient post-mortem samples. Importantly, targeting 
ER stress in experimental models of HD has resulted in increased neuronal cell 
viability both in vitro and in vivo. Here, we discuss the recent advances in the 
field that link ER stress signaling pathways to mHtt aggregation and toxicity.
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of coping mechanisms called the Unfolded Protein Response (UPR) 
[12]. UPR activation results in the initiation of a transcriptional 
program that leads to the up-regulation of ER chaperones [13] and 
transient global attenuation of protein translation to decrease the 
amount of newly synthetized proteins [14]. While the UPR has been 
conserved throughout evolution, the complexity of the UPR signaling 
network has evolved over time; one ER stress sensor is present in 
yeast (Ire1), while mammals have three (IRE1, PERK, and ATF6) 
[15] (Figure 2). In the budding yeast S. cerevisiae, the ER-resident 
transmembrane protein, inositol-requiring enzyme 1 (Ire1), splices 
HAC1 mRNA [16], allowing the translation of the transcription 
factor Hac1 which increases the expression of a vast number of UPR 
target genes [17]. These UPR-driven genes include ER chaperones, 
degradation machinery and genes regulating lipid homeostasis and 
ER membrane proliferation [17]. Unresolved UPR during prolonged 
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Huntington’s Disease
Huntington ’s disease (HD) is an autosomal neurodegenerative 

pathology associated with mutations in a gene encoding the Htt 
protein [1]. The result is an increased number of polyglutamine 
repeats (polyQ) within a stretch of the first exon of Htt (Httex1) [2]. 
In asymptomatic individuals the HTT gene encodes less than 35 
repeats, while an increase in this number leads to the appearance 
of HD symptoms in patients, including cognitive loss, involuntary 
movements and diminished coordination [3] (Figure 1). PolyQ repeat 
expansion leads to an increased propensity of mutant Huntingtin 
(mHtt) to aggregate into cytoplasmic, non-soluble, amyloid-like-
fibrils called inclusion bodies [4,5]. Various aspects of neuronal cell 
homeostasis are impaired in HD, including transcription [6], calcium 
signaling [7], mitochondrial activity [8] and protein degradation 
pathways [9-11], which can all be traced back to a dysfunctional ER 
stress response. Thus, expression of mHtt impairs normal cellular 
functions, especially the ability of cells to properly regulate stress 
response pathways.

The Unfolded Protein Response
In eukaryotic cells nearly a third of the proteome consists of 

secreted proteins that enter the secretory pathway via the ER, where 
quality control machinery assists and monitors the proper folding 
of the nascent peptides. When environmental insults or mutations 
perturb the ER folding environment, the result is an increase in the 
ER misfolded protein burden. Aberrant accumulation of misfolded 
proteins in the ER is detrimental to cells and triggers an ensemble 
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Figure 1: Htt toxicity at the cellular level. Expansion of the number of 
polyQ repeats within the first exon of Htt results in the appearance of HD 
symptoms in humans. PolyQ repeat expansion results in increased mHtt 
aggregation. PC12 cells expressing GFP-tagged Htt exon1 with either 25 or 
103 repeats are shown.
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ER stress can lead to sustained Ire1 signaling, which is ultimately 
detrimental to yeast cells and leads to growth arrest and death [18,19]. 
In higher eukaryotes, accumulation of misfolded proteins in the ER 
over a certain threshold activates cell death signaling pathways, 
including several caspases, and results in induction of apoptosis 
[20-23]. Ire1 activation in both yeast and mammals has traditionally 
been associated with direct binding of misfolded proteins to the 
lumenal domain of Ire1. However, recent studies including our 
own, showed that perturbation of the lipid composition of the ER 
membrane can trigger UPR activation independently of misfolded 
protein accumulation [24-26]. It appears that the lumenal domain of 
yeast and mammalian Ire1, as well as PERK, can sense changes in 
lipids. Thus, multiple mechanisms can lead to UPR sensor activation 
[25,26]. The physiological relevance of these different activation 
modes to ER stress-associated diseases such as HD will be the focus 
of future studies.

In mammals, accumulation of misfolded proteins in the ER 
also leads to activation of ER stress sensors (Figure 2). During ER 
stress, ATF6 enters the Golgi apparatus where the Site-1 protease 
(S1P) and Site-2 protease (S2P) release the ATF6 N-terminal domain 
that translocates to the nucleus to upregulate genes involved in 
maintaining homeostasis of the ER folding environment [27,38,39]. 
PERK and IRE1 homo-oligomerize, autophosphorylate and activate 
specific downstream signaling cascades [27,28]. PERK phosphorylates 
eIF2α resulting in global attenuation of translation and increased 
expression of Activating Transcription Factor (ATF) 4, which then 
upregulates transcription of ER chaperones [29,30]. However, ATF4 
activation can also lead to activation of pro-apoptotic pathways that 
depend on the production of the CHOP/GADD153 transcription 
factor [31]. Interestingly, deletion of CHOP increases cell survival 
during ER stress [32].

Similar to what happens in yeast, mammalian IRE1 splices 
XBP1 mRNA allowing the translation of the transcription factor 
which upregulates specific UPR targets [27,33]. Mammalian IRE1 
also degrades mRNA targeted to the ER to reduce the amount of 
newly synthesized secretory proteins during ER stress in a process 
termed regulated Ire1-dependent decay (RIDD) [34]. A recent study 
showed that CHOP activation during prolonged ER stress leads to 
activation of the cell death receptor 5 (DR5). However, IRE1 can 

transiently induce DR5 mRNA decay, indicating that different UPR 
signals have opposing effects [23]. Moreover, IRE1 has also been 
shown to degrade micro RNAs to derepress caspase 2 expression, 
leading to cell death [35]. Furthermore, IRE1 regulates other pro-
apoptotic molecules including JNK [36] and BCL-2 family members 
[20]. Thus, the mammalian UPR response is a rather complex 
paradox, simultaneously inducing both an adaptive response and 
pro-apoptotic pathways [37]. Regardless, UPR signaling is at the 
root of various neurodegenerative diseases where misfolded proteins 
accumulate, including HD, and targeting the UPR in these disorders 
has been the focus of several studies [40, 41].

UPR Activation in Huntington’s Disease
Multiple studies have identified the impairment of ER quality 

control as a modulator of mHtt toxicity. Striatal cells from the Htt 
knock-in mouse, expressing 111 polyQ repeats, display signs of ER 
stress [42], as do striatal neurons in the R6/2 mouse, which expresses 
the Httex1 containing 150 polyQ repeats [43]. Furthermore, expression 
of mHtt in knock-in mouse models of HD resulted in activation 
of ER stress pathways and early upregulation of Rrs1, a regulator 
of ribosome synthesis [44]. The same study also showed that UPR 
markers such as BiP are upregulated in post-mortem samples of HD 
patients [44]. mHtt expression has been shown to both induce ER 
stress and impair misfolded protein degradation [45,46] and live-cell 
imaging assays have shown that expression of mHtt in the cytoplasm 
can trigger accumulation misfolded proteins in the ER [47]. Studies 
have also shown that the Htt protein can associate with the ER and 
can potentially play a direct role in induction of ER stress [48,49]. 
Interestingly, knockdown of the ER stress transcription factor XBP1 
targeted to the striatum resulted in a decreased propensity to exhibit 
HD pathology, with decreased mHtt expression and improved 
neural survival and motor performance [50]. Finally, treatment of 
mice expressing mHtt with the bile acid tauroursodeoxycholic acid, 
a compound known to attenuate ER stress [51], decreased striatal 
atrophy and apoptosis [52]. Taken together, these findings illustrate 
a major role for the UPR in HD pathology, making the role of ER 
homeostasis in cell survival a priority in HD research.

The ER Misfolded Protein Burden and mHtt 
Expression

Accumulation of misfolded proteins in the ER is a hallmark of 
perturbed ER homeostasis. However, it was unclear how a cytoplasmic 
protein such as mHtt could induce changes in the ER misfolded 
protein load. BiP/GRP78 is a protein folding chaperone that is 
upregulated during ER stress to help cope with the accumulation of 
unfolded proteins [53]. In order to monitor the misfolded protein 
burden in cells expressing toxic mHtt proteins, we developed a 
live cell imaging technique to quantify misfolded protein burden 
in real time by expressing a BiP-GFP fluorescent fusion protein in 
cells. Upon induction of ER stress, BiP binds to unfolded proteins 
forming a complex that decreases the lateral mobility of the BiP-
GFP reporter [47,54]. Fluorescence recovery after photobleaching 
(FRAP) allows us to photobleach a region of interest (ROI) in 
BiP-GFP expressing cells and subsequently monitor the diffusion 
of unbleached fluorescent BiP molecules into the bleached area 
over time. The diffusion coefficient (D) is then calculated using the 
diffusion rate at which fluorescent signal repopulates the ROI [55]. 
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Figure 2: The Unfolded Protein Response. In mammals, the UPR consists 
of 3 ER stress sensor proteins (IRE1, PERK and ATF6) and their specific 
signaling cascades that monitor changes in the ER misfolded protein burden.



Austin J Anat 1(5): id1025 (2014)  - Page - 03

Patrick Lajoie Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

We previously co-transfected Neuro2a cells with BiP-GFP and mHtt 
proteins of varying polyQ length [47]. This approach revealed that 
cells expressing cytoplasmic mHtt show decreased BiP-GFP mobility, 
suggesting that mHtt indirectly affects the flux of misfolded peptides 
out of the ER for degradation as previously demonstrated [45]. For 
the first time, changes in misfolded protein flux in and out of the ER 
could be quantified in living HD neuronal cells. Thus, this assay can 
be used to test the ability of small molecules to restore ER homeostasis 
in HD cells.

ER-Associated Degradation and 
Huntington’s Disease

ER-associated degradation (ERAD) is a degradation mechanism 
integral to ER protein quality control. ERAD alleviates the misfolded 
and unfolded protein load in the ER lumen through ERAD-specific 
factors, transporting proteins to the cytosol for ubiquitin-mediated 
degradation by the proteasome [56]. We and others have shown 
that expression of expanded mHtt proteins in yeast, PC12 and 
mouse striatal cells is toxic due to ER dysfunction [10,46,47]. The 
mechanism of mHtt toxicity involves the sequestration of the ERAD 
transport chaperones p97, Npl4 and Ufd1, leading to inefficient 
transport of unfolded proteins to the cytosol. Unfolded proteins then 
accumulate in the ER and are not degraded, sensitizing cells to other 
forms of stress, ultimately leading to cell death [45]. Furthermore, 
overexpression of Npl4 and Ufd1 in cells expressing mHtt proteins 
leads to amelioration of toxicity, confirming that mHtt toxicity is 
elicited through ERAD inhibition [45]. Also, mHtt has been shown 
to sequester Gp78, an E3 ligase that plays an important role in ERAD 
[57]. Interestingly, soluble mHtt oligomers, and not inclusion bodies, 
have been associated with mHtt toxicity. Recently, it was shown that 
these oligomers are indeed the species responsible for induction or 
ER stress and ERAD impairment in mHtt-expressing cells [46].

Conclusions
Several research groups have now established a clear link between 

UPR activation and mHtt toxicity in various models of HD. Recent 
studies show that modulation of UPR can improve mHtt-expressing 
cell survival. Interestingly, striatum-targeted knockdown of the ER 
stress transcription factor XBP1 in mice improves HD phenotypes 
[50], indicating that preventing excessive UPR activation can be 
beneficial for HD cells. Moreover, small molecule inhibition of PERK 
improved survival of striatal cells expressing mHtt [58]. New specific 
inhibitors of IRE1 have been developed [22,59,60] and have been 
shown to be beneficial in animal models of multiple myeloma [60] 
and diabetes [22]. However, their impact on mHtt toxicity remains 
to be tested. Furthermore, pharmacological inhibition of protein 
disulfide isomerase (PDI), a key component in protein folding, has 
been shown to improve cell viability in HD models, indicating that 
targeting the ER protein control machinery can reduce mHtt toxicity 
[61]. Thus, targeting UPR sensors and their downstream effectors 
represents an exciting avenue to improve our ability to manage HD.
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