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oxygen species [18,19].

Cigarette smoking is a responsible for a high concentration of 
reactive oxygen species (ROS), nitric oxide (NO), peroxynitrite, and 
free radicals of organic compounds.

ROS include a variety of oxygen containing substance with high 
reactivity with other biomolecules. ROS include both free radicals 
(containing one or more unpaired electrons) , such as superoxide 
anion (O2-), hydroxyl (-OH), peroxyl (ROS2.), and hydroperoxyl 
(HO2.) and nonradical species that are either easily converted into 
radicals or are oxiditzing agents, such as hydrogen peroxide (H2O2) 
and other peroxides (ROOH). Under physiological condition, ROS 
are produced in a controlled manner and play important roles as 
secondary messenger in many intracellular signalling pathways 
[20,21]. In sperm, ROS have been shown to have an important 
participation in the regulation of all the functional parameters, 
including motility, capacity, sperm –zona pellucida interaction, 
acrosome reaction and sperm –oocyte fusion [22,23].

It has been demonstrated that free radicals can oxidize lipids, 
amino acids and carbohydrates as well as causing DNA mutations 
[24].

It was shown by many authors that when the levels of ROS rise 
above the body’s antioxidant defense system, oxidative stress (OS) 
occurs. In this circumstance, the elevated levels of ROS damage cells, 
tissues, and organs [25,26].

A possible explanation for these finding could be the increased 
leukocytes thatinduced oxidative stress (OS) on developing or mature 
sperm, and inadequate scavenging antioxidant enzymes in the 
seminal fluid of smoker men [27]. 

Metabolites of cigarette smoke components may induce an 
inflammatory reaction in the male genital tracts with subsequent 
release of chemical mediators of inflammation such as interleukines 
-6 and interleukin-8, which can recruit and activate leucocytes [28]. 

The activated leucocytes can produce high levels of reactive 
oxygen species (ROS) in semen which may affects the antioxidants 
capacity and results in oxidative stress [29].

Chromatin Condensation of Spermatozoa
The appropriate packaging of the sperm chromatin is believed to 

be essential for male fertility.

Higher order chromatin structure withinthe nucleus may play 
an extremely important role in regulation of gene expression and in 
mediating other cellular functions [30,31]. 

Mammalian sperm DNA is the tightest compacted eukaryotic 

Cigarette Smoking Contents
There have been a number of reviews indicating that our 

epigenomes may be sensitive to “environmental” influences which can 
be broadly defined to include diet, toxins, stressors, and psychosocial 
influences [1,2,3].

A variety of environmental chemicals of concern for human 
health have been investigated for their potential effect on DNA 
methylation and other epigenetic effects [4]. 

Cigarette smoking is a modifiable risk factors for advers health 
outcome and a major cause of morbidity and mortality [5]. 

Various groups reported the negative impact of smoking on 
sperm pararameters, concomitant with increased seminal reactive 
oxygen species [6,7].

In fact, cigarette smoke is a complex mixture of chemical 
compounds containing about 4000 hazardous materials; out of which 
400 are toxic chemicals, about 40 are malignant, and more than 55 are 
carcinogens [8,9,10]. 

An analysing study have quantified the cadmium (1.2 to 90.3 
nanograms [ng] per cigarette), lead (0 to 41.4 ng/microgram [µg], and 
mercury (0.25 to 4.3ng/µg) in mainstream smoke.

The toxic effects of the heavy metals lead, mercury, and cadmium 
on reproduction and development are well known and widely 
reviewed in both clinical and animal studies [11,12]. 

Studies of men report an adverse relationship between levels of 
lead in blood and levels in sperm, in addition to adverse pregnancy 
outcome in their partners [13,14].

Male and female reproductive effects from metal toxicity are well 
documented including effects on fertility, menstrual cycle function 
and adverse pregnancy outcome [15,16]. 

In addition, many of these chemicals are poisonous 
substancessuch as nicotine and its metabolite cotinine [17]. These 
harmfull substances such as nicotine, alkaloids, nitrosamine, cotinine 
and hydroxycotinine are important in the production of reactive 
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DNA [32]. Normal sperm nuclear composition is essential to 
maintain sperm DNA integrity [33]. Besides, sperm chromatin is very 
tightly compacted by virtue of the unique associations between the 
DNA and sperm nuclear proteins [34].

Mature sperm nuclei is highly compacted and measure a volume 
40 time less than that of normal somatic nuclei [32], and the DNA in 
mammalian sperm is tightly compacted into linear arrays organized 
as loop domains [32].

High order of chromatin packaging is required for normal sperm 
function, various authors have also pointed out that tight chromatin 
packaging has protective function against endogenous and exogenous 
agent such as nucleases, free radicals or mutagenes.

Also, the function of sperm is to safely transport the haploid 
paternal genome to the egg containing the maternal genome. The 
subsequent fertilization leads to transmission of a new unique diploid 
genome to the next generation. Before the sperm can set out on its 
adventurous journey, remarkable arrangements need to be made 
during the post-meiotic stages of spermatogenesis [35].

Haploid spermatids undergo extensive morphological changes, 
including a striking reorganization and compaction of their 
chromatin. Thereby, the nucleosomal, histone-based structure is 
nearly completely substituted by a protamine-based structure. This 
replacement is likely facilitated by incorporation of histone variants, 
post-translational histone modifications, chromatin-remodeling 
complexes, as well as transient DNA strand breaks [35].

During the process of sperm chromatin remodeling, any 
abnormalities in each steps including DNA organization levels, 
histone-protamine replacement, and disulfide bond formation may 
cause DNA and chromatin damages.Sperm chromatin structure and 
DNA integrity are known to have a crucial influence on the fertilizing 
process [36,37] and on individual fertility capabilities [36,38]. Besides, 
the integrity of sperm DNA is crucial for the correct transmission of 
genetic information to future generations.

Many studies have shown negative correlation between the 
defetcts of sperm chromatin integrity and male fertility potential.

Indeed, a correlation between chromatin condensation and the 
occurrence of DNA nicks has been reported in mouse and human 
spermatozoa [39,40].

Sperm chromatin quality correlates with pregnancy outcome in 
in vitro fertilization [41,42]. 

Sperm chromatin abnormalities have been studied extensively in 
the past two decade as a cause of male infertility [43]. Abnormalities 
in the sperm chromatin organization, characterized both by damaged 
DNA and incompletely remodelled chromatin in mature sperm cells, 
may be indicative of male infertility regardless of normal semen 
parameters [44,45]. 

Histones
Histones are a group of evolutionary conserved proteins that play 

a critical role in the packaging of DNA into chromatin. There are four 
classes of core histones (H2A, H2B, H3,H4) and a linkerhistone (H1).

The regulatory function of histones is mainly achieved through 

their covalent modification, primarily at amino acid residues in their 
N-terminal tail region [46]. Chromatin modelling is accompanied 
by changes in the shape, conversion of negatively supercoiled 
nucleosomal DNA into nonsupercoiled state [47]. It is mediated 
by drastic change at the most fundamental level of DNA packaging 
where a nucleosomal architecture shifts to a toroidal structure [48].

This change implemented bysperm nuclear basic proteins (SNBs) 
that include variants of histone subunits, transition proteins, and 
protamines [49]. The first new proteins to appear are four histone 
variants that replace some or the majority oftheir somatic H2B, H3, 
H2A, and H1 histone counterparts [50]. Also, the histone in sperm 
involves a group of proteins that are compositionally and structurally 
similar to the core (H2A, H2B, H3, and H4) and linker (H1/H5) 
somatic histone. They are enriched in both lysine and arginine. 

The major functions of canonical histones are genome packaging 
and gene regulation. The non-canonical histones (histone variants) 
play a role in a wide range of processes, such as transcription initiation 
and DNA repair by establishing a distinct chromosomal domain to 
carry out a specialized function [51].

Male germ cells have an unusually high number of histone 
variants in comparison to somatic cells.Several histone variants are 
exclusively expressed in male germ cells, so they are testis –specific 
histone variants [52]. 

Incorporation of one of the testis –specific histone variants 
is thought to form nucleosome with lower stability than those 
containing canonical histone [53]. The testis specific histones include 
H1 variants [54], H2A and H2B and H2BFWT variants [55] and H3 
variants [56]. The predominant isoform is histone H2B [57]. The exact 
role of these histone H2B variants is largely unknown. However, the 
temporal accumulation of histone variants during spermatogenesis 
indicates their potential involvement in meiosis, spermiogenesis, 
and fertilization [58]. Specifically, H2BFWT may be associated with 
telomeres, a finding that suggests a putative role in early chromatin 
remodeling at fertilization [50]. 

Histone H4 belongs to the most slowly evolving proteins in 
eukaryotes, and variants has been described only in a few species 
[59]. In mammals, no histone H4 variant is known. Hyperacetylation 
of H4 is the normal mark at the onset of the histone to protamine 
change [60].

During spermatogenesis, histone proteins are replaced with 
protamines [61,62], a characteristic previously thought to negate 
the ability of histone to transmit epigenetic information during the 
process of gametogenesis. 

Because the protamines do not contain any modifiable tails, any 
epigenetic information carried on histones is unable to be passed 
through the male germ line [63]; however, it is unknown whether 
they play a role in passing on any epigenetic information to the 
resulting zygote [64,65]. 

However, it is now known that some histones are retained during 
protamine replacement [66], suggesting that modifications that are 
present on these retained histone proteins may help to mark the 
relevant chromosomal regions as those requiring the methylation 
marks that specify imprinting.
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The degree of chromatin condensation can be assessed with 
the aid of acidic aniline blue staining, which discriminates between 
lysine-rich histones and arginine- and cystein-rich protamines [67]. 
This technique gives a specific positive reaction for lysine and reveals 
differences in basic nuclear protein composition of ejaculated human 
spermatozoa. 

Spermatozoa that stained dark with aniline blue, reflects high 
levels of persistent histones in diminished maturity of ejaculated 
spermatozoa [68].

Ovari et al. [69] found an inverse correlation between the 
proportion of sperm with dark aniline blue staining and curvilinear 
sperm velocity.

However, it has been demonstrated that a significant percentage 
of spermatozoa in infertile men have a greater amount of residual 
histones than fertiles [70].

The transition proteins
The mammalian transition proteins TP1, TP2, and TP4 appears in 

the chromatin of mid-stage spermatids at the same time the majority 
of the histones are removed from the chromatin. TPs are required 
for normal chromation condensation, for reducing the number of 
DNA breaks andfor preventing the formation of secondary defects in 
spermatozoa and the eventual loss of genomicintegrity and sterility. 

TP1 is a 6.2 Da, highly basic (about 20% each of arginine and 
lysine) protein with evenly distributed basic residues [71,72].

The best characterized of these proteins, transition protein 1 and 
transition protein 2, represent about 55% and 40% of spermatid total 
nuclear proteins, respectively [73]. Transition protein 1 is a small 
basic protein of 54 residues, rich in arginine, lysine and serine, TP2 is a 
15,641Da basic (10% each of arginine and lysine) protein with distinct 
structural domains. Twice the size of transition protein 1, transition 
protein 2 is enriched in basic residues in its carboxy terminus and 
contains two putative zinc fingers in the amino-terminal region. After 
histone removal and before protamine deposition, transition proteins 
constitute 90% of all chromatin basic proteins. 

With the appearance of TP1 and TP2,the chromatin begins to 
condense somewhat with condensation progressing in the nucleus 
from an apical to caudal direction [74,75]. 

Mice mutants for transition proteins 1 or 2 alone are able to 
produce offspring, although with reduced fertility, suggesting 
overlapping roles of these proteins and indicating that either the 
TPs were not essential or that the individual TPs complement 
each other [76,77]. Zhao et al. [78] using double knockout mouse 
model demonstrated that the absence of both TP1 and TP2 
seriously compromise chromatin condensation leading to infertility 
whichsuggested that TP1 and TP2 are partially complemented by 
each other.

Protamine
The molecular structure of the human protamine–DNA complex 

is still poorly understood [79,80]. Protamines are highly basic proteins 
half the size of typical histone [81]. Protamines are small proteins 
(relative molecular mass 4,000–12,000) that are evolutionarily related 
to histone H1, but have significantly different biochemical properties 

[82]. Protamines have very low lysine content, and more than 50% 
of their residues are arginine, which is probably responsible for their 
high DNA-binding affinity. This can be attributed to the fact that 
arginine has a greater flexibility in the formation of hydrogen bonds 
with the DNA backbone owing to its complex guanidinium group 
[83]. Also, Arginines are represented as 55-79% of the amino-acid 
residues in protamines, permitting a strong DNA binding [84]. 

To achieve the highly compacted elongated nucleus, the 
chromatin is remodelled by a set of abundant transition proteins 
(TPs) subsequently replaced by the protamines (PRMs).

The PRMs bind DNA, neutralizing the phosphodiester backbone 
of the double helix [84] and allowing a tight compaction of the 
DNA as toroids [85]. Toroids are crosslinked by disulphide bonds 
formed by oxidation of sulfhydryl groups of cysteine present in the 
protamines [81,85]. 

Therefore, nuclear elongation halfway during spermiogenesis is 
accompanied by the transition of chromatin from a histone-based 
structure to a protamine-based structure. Nucleoprotamine is arranged 
into large toroidal subunits, each containing approximately 50 kbp 
of DNA [34]. An incomplete nucleosome to protamine remodelling 
were found in subfertile males [86]. Normal protamination of the 
spermatid nucleus provides both chemical and mechanical stability 
to the haploid genome [87] throughout their transit to fertilization 
[88,89]. Human sperm nuclei contain considerably fewer protamine 
(around 85%) than sperm nuclei of several other mammals [39] and 
therefore, they are less regularly compacted and frequently contains 
DNA strand breaks [90]. Infertile men possess a higher proportion of 
spermatozoa with an increased histone to protamine ratio than fertile 
controls [91].

Several studies have shown that the poor or aberrant 
protamination of sperm DNA during spermiogenesis is clearly a 
major factor in sperm chromatin damage induction [92,93].

Protamines are required for i) condensing the male genome to 
create a more compact and hydrodynamic nucleus.The spermatozoa 
with more hydrodynamic nucleus have the capacity to move faster 
and thus the more potential to fertilize the oocyte, ii) protecting 
the genetic informations from nucleases, mutagens or damage 
from reactive oxygen species or other toxic agents, iii) epigenetic 
remodeling during the process of spermiogenesis and iv) removing 
transcription factors and proteins to help reorganize the imprinting 
code in the oocyte [94]. 

Besides, most mammals express only protamine 1, whereas 
mice and humans express two types of protamine families. Human 
spermatozoa contain two types of protamines, P1 and P2, with a 
second type deficient in cysteine residues [95]. Also, the P1 family 
has been reported in all species of vertebrates studied to date [96,97].

Their structures differ and disruption of either gene in the mouse 
results in male infertility [33]. The ratio of P1 to P2, in normospermic 
human samples is around 1 [98]. Variations in the levels of 
protamination by an unbalanced P1/P2 ratio may result in male 
infertility. In oligospermic subjects, often a shortage of P2 is found in 
combination with the presence of P2 precursor proteins [99]. 

Mengual et al. [96] noted that the sperm nuclear P1 to P2 ratio 



Austin Andrology 1(1): id1005 (2016)  - Page - 04

Hammadeh ME Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

was significantly higher in the subgroup of men with oligospermia 
compared to the fertile controls. In infertile humans, where sperm 
nuclear protein have been more deeply analysed, the unbalance 
between P1/P2 ratio differentially impacts on the integrity of DNA 
and in the reproductive outcome of these couples [99,100]. It has 
been reported that P1/P2 ratio in human sperm correlates with the 
levels of sperm DNA fragmentation and also with the rate of sperm 
DNA damage [96]. Fertile control and subfertile patients showed a 
difference between P1/P2 ratio with different types of pathologies 
[101]. 

Observations in infertile men and transgenic mice models 
demonstrated that low PRM content in sperm or altered PRM1-
PRM2 ratio is associated with infertility [102-105]. 

It has been shown that a sperm with protamine deficiency and 
increased histone leads to premature chromatin condensation 
and that is one of causes of failure in fertilization and embryo 
developments [106,107].

Sperm chromatin unpacking and reorganization
After fertilization, the highly packaged nucleoprotamine sperm 

genome must be decondensed. One of the first steps must be reduction 
of the protamine disulphide bonds to allow protamine removal and 
subsequent organization of the DNA in a nucleosomal structure. 
The chromatin changes and unpacking after fertilization potentially 
relevant to the function of protamines are reviewed elsewhere 
[108,109]. It is possible that differential marking of different sperm 
genomic DNA regions with P1 or P2 protamines or with histones, 
histone variants or with other proteins could contribute, after 
fertilization, to establish the order of paternal gene reactivation or 
even could be involved in setting up the appropriate imprinting of 
different paternal genes. The repair capacities of the oocyte arequite 
stable throughout oogenesis and persist after fertilization and may 
repair DNA damage from both parentalgenomes [110].

The Origin of DNA Damage and Mechanism
Sperm DNA is recognized as an independent measure of sperm 

quality that may have better diagnostic and prognostic capabilities 
than standard sperm parameters especially with assisted reproduction 
technique [111].

The exact mechanisms by which chromatin abnormalities/DNA 
damage arise in human spermatozoa are not exactly understood, but 
four main theories have been proposed at molecular level, namely 
defective sperm chromatin packaging, apoptosis, oxidative stress and 
genetic lesions.

Oxidative stress is likely to be one of the major culprits [112], 
although in some cases, exposure to xenobiotics might also be involved, 
as in the case of male smokers or men employed in occupations (wood 
and metal processing industries) that are significantly correlated with 
pathology in their children.

Also, exposure to environmental or industrial toxins, oxidative 
stress, smoking, etc, are known to cause sperm DNA fragmentation 
and infertility [113-116]. 

It is shown that the sperm from smokers men are significantly 
more sensitive to acid-induced DNA denaturation than non-smokers 
[26,113].

Also, cigarette smoking is significantly associated with the 
percentage of “round–headed” spermatozoa and decreased 
superoxide dismutase levels in semen [27]. 

Despite association between DNA damage and male infertility, 
there is a detectable level of DNA damage in spermatozoa of fertile 
men [117]. 

Deficiencies in recombination during spermatogenesis, 
leading to cell apoptosis

Sperm DNA fragmentation may also occur during spermiogenesis 
as a result from aberrant chromatin packaging [118-120].

Stage –specific occurrence of transient DNA strand breaks during 
spermiogenesis has been observed [121,122]. 

DNA single strand breaks (SSBs) and Double (DSBs) during 
spermatogenesis (round and elongating spermatid) are necessary for 
transient relief of torsional stress, and aiding their replacement with 
transitional proteins and protamines during maturation of elongating 
spermatids [70,99]. 

Torosional stress increase during spermiogenesis, as DNA 
condensed and packed into the differentiating sperm nuclear protein. 
However, endogenous endonucleases (Topoisomerases) may induce 
DNA fragmentation as way of relieving this stress [123]. Macron 
and Boissonneault [123] Showed that DNA breaks are present in the 
whole population of fertile mouse and human spermatids and are 
part of the normal differentiation program of these cells.

Horak et al. [124] showed that the levels of bulky DNA adducts 
was 1.2 fold higher in smokers than non-smokers where a significant 
differences of 1.7 fold incease existed between current smokers and 
never smokers. 

Perrin et al. [125] demonstrated that tobacco consumption is 
associated with benzo (a) pyrene-diol-epoxide-DNA adducts in 
spermatozoa. 

Abnormal sperm maturation (Protamination disturbance) 
Sperm chromatin integrity is essential for successful fertilization, 

embryo development, and normal pregnancy and protamine 
deficiency appeared to effect fertilization rate and embryo quality. 

Defective maturation processes during spermiogenesis could 
resulting in a diminishing sperm chromatin packaging and make 
sperm cells more vulnerable for ROS–induced DNA fragmentation. 

A less compacted sperm nucleus would be more vulnerable to 
any chemical or physical insults, such as those resulting fromreactive 
oxygen species [126].

De Yebra et al. [122] observed that infertile men have a high 
degree of variability in the relative sperm histone to total nuclear 
protein ratio.

Sperm protamine deficiency (partial or complete) is observed 
in a subset of infertile men and suggests that the relative histone to 
protamine ratio may be altered in the spermatozoa of these men 
[127,128]. 

Theoritically, any failure to fully protection of the DNA during 
epididymal passage like the presence of protamine 2 precursors, 
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slightly higher levels of residual histones, less disulphide bond 
formation, and decreased compaction of the spermnuclei may cause 
injury to the DNA [78]. 

It has been shown by [129] that defective sperm nuclear protein 
replacement, resulting in protamine deficiency, is positively associated 
with sperm DNA damage. 

Besides, according to Zini et al. [130], the observed relationship 
between sperm head defects and percentage of High DNA Stainability 
(HDS) suggests that sperm head abnormalities may partially be due 
to imperfect sperm chromatin condensation.

Talebi et al. [131] suggested that the production of spermatozoa 
with less condensed chromatin may be one of the explanations 
of infertility due to varicocele. They used cytochemical tests for 
sperm chromatin evaluation and showed that the rates of aniline 
blue-reacted spermatozoa (with increase in residual histone) were 
significantly higher in infertile and varicocele patients than in the 
normal fertile donors.

Direct testicular hyperthermia and febrile illness has been shown 
to cause an increase in the histone protamine ratio and DNA damage 
in ejaculated spermatozoa [132]. 

Finally, the data show that certain behaviours are associated with 
increased scrotal heat (e.g., use of hot baths, saunas, down-filled 
blankets, laptop computers and driving for long times) [133].

Abortive apoptosis
Spermatozoa cannot undergo conventional programmed 

cell death called “Apoptosis” but are capable of exhibiting some 
of the hallmarks of apoptosis including caspase activity and 
phosphatidylserine exposure on the surface of sperm cell membrane 
which is termed as “abortive apoptosis” [37,134].

Apoptosis of testicular germ cells occurs normally throughout 
life, preventing their overproliferation [76,135]. It has been shown 
that an early apoptosis pathway, is intiated by Fas Protein and that 
Setroli cells express Fas ligand , which by binding to Fas leads to cell 
death via apoptosis [136,137], reducing the number of germ cells 
population to numbers Sertoli cells can support [76]. 

The percentage of germ cells undergoing apoptosis in 
normal subjects is significantly lower than that seen in men with 
oligoasthenoteratozoospermia, Hodgkin’s disease, and testicular 
cancer [138]. The incidence of caspase activation and DNA 
fragmentation is some what lower in samples from patients with 
hypospermatogenesis, in which some germ cells achieve the late 
elongated spermatid stage [139].

Oxidative stress
When levels of ROS rise above the body’s antioxidant defense 

system, oxidative stress (OS) occurs. In this circumstance, the elevated 
levels of ROS damage cells, tissues, and organs [26,140].

ROS in seminal plasma are primarily produced by leukocytes 
and defective sperm [141]. The generation of reactive oxygen species 
(ROS) in male reproductive tract has been shown to be a concern 
because of their effects on sperm quality and function [28]. In 
sperm, ROS have been shown to have an important participation in 

the regulation of all the functional parameters, including motility, 
capacity, sperm–zona pellucida interaction, acrosome reaction and 
sperm –oocyte fusion [22,142].

They are highly reactive and cause beneficial or detrimental 
effects to sperm structure and function, depending on their nature 
and concentration [143]. 

It has been suggested that oxidative stress can probably damage 
male germ cells in epididymis due to long exposure of ROS [144].

The pathogenic effects of ROS occur when they are produced in 
excess of the antioxidant capabilities of the male reproductive tract or 
seminal plasma [145]. Overproduction of ROS depletes enzymatic and 
nonenzymatic antioxidants leading to additional ROS accumulation 
and cellular damage [146]. Oxidative stress occurs when the level of 
ROS exceeds the antioxidants protection resulting in sperm DNA 
damage [147].

Moustafa et al. [148] determined that infertile patients had high 
ROS levels in their seminal plasma and higher percentage of apoptosis 
than normal healthy donors.

Approximately, half of infertile men exhibit oxidative stress [149]. 

Factors such as increased oxidative stress or low levels of 
antioxidants may have implications on male reproductive health 
[150]. A number of factors can lead to oxidative stress, including 
tobacco and alcohol consumption, infection (viral or bacterial), 
exposure to xenobiotic. Chlamydia has been shown to cause 
fragmentation in human sperm DNA [151]. It has been demonstrated 
that this infection causes premature decondensation of sperm 
chromatin and DNA damage to human sperm [152]. Sperm are 
vulnerable to the oxidative –stress –mediated damage, due to their 
structure with a high proportion of poly unsaturated fatty acids in 
their plasma membrane [153]. 

Leukocytes found in male genital tract infections have the 
potential to produce reactive oxygen species (ROS) [154], and in 
significant numbers can overwhelm the anti-oxidant defence system 
and could cause DNA damage as a result of oxidative stress [29]. 

The presence of elevated levels (>1x106) of leukocytes in the 
semen is defined as leukocytospermia [155] and is associated with 
increased level of ROS, leading to sperm DNA damage [156]. Besides, 
ROS cause gene mutation such as point mutations and polymorphism 
[157,158]. 

Moreover, a possible consequence of sperm DNA damage is 
infertility in the offspring [112,159]. A concern emerging from 
studies conducted in smokers in an increased risk of childhood 
cancer observed in the offspring of men with a high proportion of 
sperm with fragmented DNA in their semen. This study revealed that 
the children of these men, whose ejaculates are under oxidative stress 
[119] and characterized by a high level of chromatin fragmentation, 
are 4-5 times more likely to develop cancer in childhood than the 
children of non-smoking fathers [160].

Cigarette smoking causes oxidative stress either by producing 
high levels of free radicals or by decreasing the antioxidant capacity 
of seminal plasma [161].
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In addition to direct oxidative damage to tissue, oxidative free 
radicals modulate the immune-inflammatory system in part, through 
enhanced expression of pro-inflammatory genes [162]. Inflammation 
in turn, enhances oxidative stress. For example, in emphysema, 
increased TNF-α and TGF-β induces decreased glutathione synthesis 
and cellular glutathione, raising the cell’s susceptibility to oxidative 
damage [163-165].

How Cigarette Smoking Affects DNA 
Integrity and Other Sperm Parameters 

Life style choice plays an important role in male infertility, such 
as smoking, alcohol, and caffeine consumption have been associated 
with chromosomal aberration and genomic alterations in somatic 
cells [166-168]. In addition, cigarette smoking, alcohol, and drugs are 
the main stimulants exerting a negative effect on the male and female 
reproductive system [169]. 

Lewis et al. [170] associated cigarette smoking with decreased 
sperm count, alterations insperm motility and overall increased 
number of abnormal spermatozoa. Besides, smoking and consumption 
of alcohol and caffeine have been associated to the increase in nuclear 
DNA damage of the white blood cells [171,172]. On the contrary, very 
little is known about their effect on sperm DNA [172]. [173] Smith et 
al. added that impaired spermatogenesis is generally associated with 
increased sperm DNA damage.

Several studies showed a deleterious effect of lifestyle factors 
on the male fertility, only a few studies focused on the effect of 
tobacco smoking and alcohol consumption on male germ cells’ 
genetic integrity and showed contradictory results concerning 
sperm aneuploidy and DNA fragmentation [174,175]. The impact of 
cigarette smoking on sperm DNA integrity is somewhat conflicting. 

Shen et al. [176] reported on a positive correlation between 8- 
OHdG amount and blood cotinine, the metabolite of nicotine, levels. 

Cigarette smoke has been associated with an overall decrease in 
semen quality, a reduction in sperm count and motility and increase 
in number of morphologically abnormal sperm cells [113]. 

It has been demonstrated that the DNA fragmentation index 
(%DFI) and high DNA stainability (%HDS) are significantly higher 
in fertile men who smoked than non smokers [28,113]. 

Similarly [175] Sepaniak et al. demonstrated an association 
between cigarette smoking and DNA fragmentation. 

It is shown that the sperm from smoker men are significantly 
more sensitive to acid-induced DNA denaturation than non-smokers 
[26,113].

It is possible that high levels of sperm DNA fragmentation of 
infertile smokers could be associated with other undetermined 
factors as tobacco smoking, a source of reactive oxygen species that 
can increase the oxidative sperm DNA damage [6,177]. 

Linschooten et al. [178] indicated that spermatozoa of smokers 
encounter higher levels of oxidative stress that even expression of 
antioxidant enzymes and seminal vitamin C were insufficient to 
provide full protection of spermatozoa against such sperm DNA 
damage.

Elshal et al. [27] showed that sperm DNA fragmentation index, 
high sperm DNA stainability and round-head spermatozoa are 
increased in idiopathic infertile men associated with cigarette 
smoking attributed to increased oxidative stress and insufficient 
scavenging antioxidant enzymes in the seminal fluid.

Belcheva et al. [179] pointed to that although sperm DNA 
integrity of healthy smokers remains in the normal range; a clear 
negative trend is observed in respect of disturbed plasma membrane 
phospholipid asymmetry.

Calogero et al. [180] demonstrated that cigarette smoke extract 
could suppress sperm motility, has a detrimental effect on sperm 
chromatin condensation and apoptosis, increases spermatozoa with 
phosphatidylserine externalisation, and early apoptotic sign and 
fragmented sperm DNA, a late apoptotic sign, in a concentration- 
and time dependent manner.

Smoking increases oxidative stress, which results in deplation of 
antioxidants in the seminal plasma, thereby inducing oxidative DNA 
damage of the sperm [161] and mutagenic adducts [181]. 

Selit et al. [182] demonstrated that smoking has a negative impact 
on sperm DNA and RNA abnormalities and that is accentuated in 
heavy smokers compared to light smokers.

Hammadeh et al. [105] suggested that induced oxidative 
stress by cigarette smoking have significant inverse effects on the 
protamination process by disrupting protamine-2.

In a second study, [183] Hamad et al. proposed that smokers 
retain a higher proportion of spermatozoa with a higher histone H2B 
to protamine ratio than non-smokers, which will cause alterations in 
the sperm chromatin structure resulting in abnormal spermatogenesis 
ending with infertility.

This study was confirmed by Yu et al. [184]. In their work, they 
concluded that both smoking and defective semen quality are strongly 
associated with the histone-to-protamine transition in mature human 
sperm and smoking may interfere with the transcription of protamine 
mRNA. All together, sperm histone transition could be affected by 
cigarette smoking at the leval of protamine mRNA trancription.

Besides, there is a very strong and significant correlation between 
smoking and genetic defects in the sperm [185,186]. Others, using 
various techniques like COMET, TUNEL, CASA and 8-oxodG 
analysis could not confirm the association between tobacco smoking 
and sperm DNA injury [187,188,189]. 

Sergerie et al. [190] failed to demonstrate significant association 
between smoking and the usual semen parameters.

Cigarette smoking or product of cigarette smoke increases 
superoxide generation by both endothelial and smooth muscle 
cells from NADPH oxidase and uncoupled eNOS, and upregulates 
proinflammatory cytokines and the RhoA/ROCK contractile 
pathway. This results in reduced NO bioavailability, increased 
vasoconstriction, and endothelial dysfunction [191,192]. 

It has been shown that sperm DNA has an elevated level of 
8-OHdG in smokers [105], and this level inversely correlates with the 
intake and seminal plasma concentration of Vitamine C which is the 
most important antioxidant in sperm cell [188]. 
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Zhang et al. [193] demonstrated that seminal Zn was lower in 
the medium, heavy and long term smokers than in the non-smokers 
being negatively correlated with the amount and duration of cigarette 
smoking . 

Dissanayake et al. [194] correlated the deterioration of semen 
parameters in addition to semen pH and viscosity with the decreased 
seminal Zn.

The Relationships of DNA Damage as 
Consequences of Smoking and Others on 
IVF/ICSI Outcome

Sperm chromatin is a highly organized, condensed, and compact 
structure, which is considered to be an important factor for normal 
fertilization and pregnancy outcome [195]. 

Environmental stress, gene defects, and chromosomal 
abnormalities can disturb critical biochemical compaction processes 
that occur during spermatogenesis, and may also cause an abnormal 
chromatin structure that would finally interfere with fertility 
[42,128,196,197].

It has been demonstrated that abnormalities in the male genome, 
characterized by disturbed chromatin packaging and damaged sperm 
deoxyribonucleic acid (DNA) may be a cause for male infertility 
regardless of routine semen parameters [44,199]. Also, it has been 
shown that the sperm cells from infertile men may contain a range 
of nuclear anomalies, including abnormal chromatin structure, 
microdeletions, chromosomal rearrangements, aneuploidy and DNA 
strand breaks [200]. There is growing evidence that sperm carry 
information about the ancestral environmental that can influence the 
development and health of next generation (s), presumably through 
enduring alterations in gene expression [201-206]. 

Several authors suggested a negative relationship between 
disorganization of the chromatin material in sperm nuclei and 
the fertility potential of spermatozoa both in vivo and in vitro 
[105,195,207,208]. It has been shown how a higher percentage of 
spermatozoa with alterations in chromatin structure have a negative 
effect on ART procedure outcome [45,209-212]. 

Sperm DNA damage measured by various techniques has 
been closely associated with all the stages of ART outcome such 
as fertilization, embryo quality, implantation, pregnancy and 
spontaneous abortion [213,214]. An increase in sperm DNA damage 
is associated with decreased implantation, thereby a decrease 
in pregnancy rates [144]. Furthermore, sperm with abnormal 
chromation packaging and DNA damage is showed to result in 
decondensation failure, which results in fertilization failure [42,45]. 
In addition, a possible consequences of sperm DNA damage might be 
microdeletions in the Y chromosome, which will lead to infertility in 
the male offspring [215]. Sperm with damaged DNA are still capable 
of fertilization [147] but its effect is prominent in the later stages 
[216]. When Sperm DNA is damaged, infertility, miscarriage, and 
birth defects in offspring can occur [217]. 

A study conducted by Surahan et al. [218] has demonstrated 
that 15% of all childhood cancers are directly attributed to paternal 
smoking. This study suggests that there may be a link between 
sperm DNA damage and the subsequent development of childhood 

diseases, but other researcher could not find the association [219]. 
Moreover, men suffering from male infertility have higher levels of 
sperm with DNA damage, which result in a negative impact on their 
ART outcome [143,210,220]. 

Therapeutic Strategies to Reduce ROS 
Production and Improve IVF/ICSI Outcome 

Several in-vivo and in-vitro studies demonstrated that antioxidants 
have positive effects on oxidative-induced sperm DNA damage and 
so, these agents can manage male infertility and subfertility [221]. 
Vilorial et al. [222] found lower level of sperm antioxidant enzymes 
in smokers as compared to non-smokers, however, without any 
difference in the degree of DNA damage between the two groups.

The concentration of antioxidants in seminal plasma is 10 times 
greater than in blood plasma [126], and the presence of antioxidants 
in the seminal plasma protects the functional integrity of the sperm 
against the oxidative stress [223]. Several studies have reported that 
sperm DNA damage is associated with oxidative stress, and this 
represents the basis for the use of antioxidants in the treatment of 
sperm DNA damage [25,224,225]. A series of antioxidants enzymes 
and numerous endogenous and dietary antioxidants compound 
maintain defenses against stress by scavenging ROS. 

Glutathione peroxidase (GPx) is selenium–containing enzymes 
which reduce hydrogen peroxide to water and lipid peroxides to their 
corresponding alcohols. Thioredoxin peroxidase (TrPx) is a member 
of the peroxiredoxin family, which reduces hydrogen peroxide [226]. 

Besides, antioxidant enzymes such as the different isozymes of 
glutathione peroxidase (GPX) plays a central role in the protection of 
both the epididymal epithelium and spermatozoa during their passage 
through the epididymis [227]. It has been shown that this damage 
progressively increases from the caput to the cauda epididymis and is 
related to a decrease in the levels of the isozyme GPX-5 [227].

A specific sperm nuclear glutathione peroxidase (snGPx) with 
properties similar to that of phospholipid hydroperoxide glutathione 
peroxidase (PHGPx) and identified as a 34-kDa selenoenzyme, 
acts as a protamine thiol peroxidase and is directly involved in the 
stabilization of the condensed chromatin by specific cross-linked 
protamine disulphide bridge [228].

The nonenzymatic antioxidants include, among others, vitamin 
C (ascorbic acid), vitamin E (alpha-tocopherol) ß—carotene, and 
reduced glutathione [226]. 

Numerous nonspecific antioxidants can scavenger ROS. 
Vitamine E for example is a lipid –soluble antioxidant, which protect 
Low density Lipoprotein angainst oxidation.

Vitamine C is water-soluble antioxidants, which very effectively 
scavenges a wide array of ROS, and also prevent oxidation of BH4, an 
essential NOS cofactor [229].

Antioxidants such as vitamin E, vitamin C, and carotenoids can 
restore a proper pro-oxidant–antioxidant balance and maintain the 
integrity of sperm cells. Selenium (Se) and vitamin E supplementation 
seem to improve sperm quality and fertility [196,230,231]. 

Oral administration of the antioxidants has been shown to 
significantly increase antioxidants levels in the seminal plasma and 
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an improvement in the semen quality [232,233] and to significantly 
decrease sperm DNA damage [234] and the incidence of aneuploidy 
in sperm [235], thereby increasing the assisted reproductive success 
[236].

Besides, ascorbate and catalase, which are both found naturally in 
seminal plasma, reduce the level of ROS and improving the quality of 
sperm following cryopreservation prior to ART [237].

Metal chelators can also be useful in reducing ROS generation 
and preventing lipid peroxidation of sperm membranes, thereby 
protecting sperm nuclear DNA [238]. In the cases of male infertility 
which are suggested to be a result of existing sperm DNA damage, the 
patients can be given oral antioxidant during two months (at least one 
spermatogenesis cycle) before an ICSI attempt. The subsequent ICSI 
cycle led to a significant increase in implantation rates and clinical 
pregnancy in comparison to the pretreatment ICSI outcomes despite 
of the absence of differences in fertilization and cleavage rates or in 
embryo quality [234].

Omu et al. [239] showed that zinc therapy improves the 
spermatozoal quality through possible mechanisms such as increased 
expression of Zn-Cu superoxide dismutase and anti-apoptotic Bcl-2 
and reduced Bax, decreased seminal antisperm antibody titers and 
also reduction in sperm DNA fragmentation rates.

Hence, men with marginal semen quality were advised to get 
benefit from quitting smoking where sperm motility and morphology 
improved after 6 months of follow-up [7,240]. 

Hence, the intake of antioxidants from diet or supplements 
may have a major influence on the in vitro susceptibility of lipids to 
peroxidation and may account for the reported differences in lipid 
peroxidation between smokers and nonsmokers independent of the 
effects of cigarette smoking [241]. In a study exclusively of smokers, 
a combined antioxidant supplement resulted in increased oxidative 
resistance to lipid peroxidation [242] .

Santos et al. [243] evaluated sperm quality after a 3-month 
smoking cessation programme by sperm analysis, objective sperm 
motility analysis, protein tyrosine phosphorylation in capacitating 
conditions and DNA fragmentation (TUNEL). They found that sperm 
analysis after smoking cessation revealed a distinctive improvement 
in sperm concentration, fast spermatozoa (≥35 μm/s), sperm vitality, 
percentage of spermatozoa recuperated after an enrichment technique 
and protein tyrosine phosphorylation. 

Conclusion
These results reveals that spermatozoa from smokers have a 

higher levels of histone H2B, less condensed chromatin and higher 
DNA fragmentation than do non-smokers, suggesting that the 
spermatozoa of smokers retain higher level of H2B, which make these 
spermatozoa more susceptible for DNA damage by oxidative stress 
and other factors like smoking. Therefore, physicians should made 
aware their patients of simple lifestyle changes that could impact their 
fertility. All patients should be encouraged to strive for a healthy, 
sustainable lifestyle. In areas where there is clear evidence that a 
lifestyle behavior may impact fertility, such as smoking, the patient 
should be encouraged to modify behavior.  
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