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ongoing research needs to clarify whether BMP6 is locally produced 
in the liver, or whether it also derives from other sources and might 
become measurable in the serum of hemochromatosis patients.

It becomes apparent, that predominantly the BMP (co)-receptors 
and the extracellular BMP antagonists fine-tune the BMP signalling 
cascade and thereby directly couple immediate and long-term 
environmental changes with the operating mode of the cytokine 
[1-3,6,17]. Based on their structural integrity, BMP antagonists are 
classified into three subfamilies: (i) the DAN family; (ii) Twisted 
Gastrulation and (iii) Chordin and Noggin. As secreted glycoproteins, 
the BMP antagonists show distinct tissue specific expression patterns 
but share functional similarity through direct association with BMPs 
and prohibition of BMP binding to their cognate receptors [3-
5]. Thereby, it is suggested that the ‘so formed’ functional inactive 
complex attenuates SMAD signal transduction in order to constrain 
BMP activity locally [1-5,17]. 

In order to understand the causal relation of how local BMP 
signal adaptation affects systemic adjustments in the body it is of 
value to identify common mechanism in BMP driven rare hereditary 
and frequent acquired pathophysiological conditions. Here, research 
on the impact of BMP regulated muscle-, skeletal- and adipose-
tissue homeostasis revealed that imbalanced BMP signalling is often 
causative for diseases with indications in gain or loss if tissue volume 
and structure, hence tissue plasticity [1-3,6]. 

In this context, mainly the BMP antagonist Noggin has been 
characterized as crucial BMP regulatory factor [3-5]. Noggin 
is a pleiotropic factor which is present during gastrulation and 
tissue development. The presence of Noggin in mouse ectodermal 
and endodermal tissues has been shown but its BMP/SMAD 
antagonizing function has been mainly investigated in mesodermal 
tissue derivatives namely bone, cartilage, muscle, fat and dermis 
[3]. In Noggin null mice a series of developmental abnormalities, 
including failure of neural tube formation, hair-follicle retardation, 
dysmorphogenesis of the axial skeleton and joint lesions have been 
described [3,18]. Counterintuitive to the proposed dogma, the 
absence of Noggin in these mice did not lead to hyper-ossification 
of bone due to excessive BMP signalling but rather delayed and even 
abrogated bone ossifications [18]. Similarly, it has been described 
that in these mice late stages of myogenesis were delayed and lead to 
reduced muscle mass [18]. This is in particularly interesting since it 
was recently shown that the BMP/SMAD pathway is a hypertrophic 
signal in adult mice controlling muscle maintenance, growth and mass 
[19]. Furthermore, it has recently been shown that higher Noggin 
levels were measured in mesenchymal stem cells (MSCs) of adult 
obese mice [20]. Interestingly, obese mice demonstrated a reduced 
bone mineral density, suggesting a switch of MSC differentiation to 
enhanced adipogenesis whereas a Noggin knockdown resulted in 
increased osteogenic differentiation of adipose-derived stem cells 
[21,22]. 
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The human body is a complex adaptive system that has the innate 

capacity to overcome changing conditions through the modularity 
of signalling cues. It has been shown that the adaptability of Bone 
Morphogenetic Protein (BMP) regulated adult tissue homeostasis 
often disintegrates in degenerative diseases [1,2]. Thereby, 
pathophysiological conditions, including impaired regenerative 
diseases of the muscle, bone and adipose tissue illustrate the functional 
interdependency of the BMP agonist with its antagonists [1,3]. In this 
context, complimentary expression has often been suggested to be 
imperative for healthy adaptability and regeneration of adult tissue 
homeostasis [1-5]. 

Up to date, more than 15 human BMPs have been characterized, all 
belonging to the TGF-β super family of metabologens that constitute 
pivotal morphogenetic signals and orchestrate local and systemic 
tissue homeostasis [6].  It has been shown, that BMPs take part in 
basic adult tissue-physiology through the regulation of the respective 
stem cell niche integrity [7]. In order to mediate it’s function, BMPs 
bind distinct transmembrane BMP type I and type II receptors which 
initiate intracellular SMAD and non-SMAD signalling cascades that 
regulate transcriptional as well as non-transcriptional responses, 
necessary for stem cell and progeny fate decisions including 
proliferation, migration and differentiation [1,2,6].

The function of BMPs as determinant of intra-tissue homeostasis 
has recently been broadened through the discovery that a sub-
group of BMPs, namely BMP4, BMP6 and BMP9 are detectable in 
the circulating system [8]. Thereby, it was shown that up to 10pg/
ml BMP6 is present in human sera of healthy individuals, suggesting 
that BMPs putatively also act as endocrine factors that take part in 
the regulation of inter-tissue homeostasis [9]. Indeed, an integrated 
functional genomic screening program revealed that in particular the 
circulating BMPs act as adipokines that take part in the regulation of 
glucose homeostasis [10-12]. Since, systemic treatment of mice with 
BMP9 revealed micro-vesicular changes and necrosis in the liver; it 
is still under debate whether BMPs are suitable for the treatment of 
diabetes [13]. Interestingly, further studies on the role of BMPs in the 
liver identified that-through the recruitment of the BMP co-receptor 
hemojuvelin-BMP6 becomes the key endogenous regulator of 
hepcidin which in turn regulates iron metabolism [14-16]. Thereby, 
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How important Noggin is in humans has been shown 
through Noggin heterozygous missense mutations which lead to 
deregulation of apoptotic processes in the interphalangeal joints as 
seen in proximal symphalangism (SYM1) and multiple synostosis 
syndrome 1 (SYNS1)  [3-5]. Besides implications in cancers such as 
schwannoma or prostate cancer metastasis, current knowledge on 
Noggin’s role in humans is primarily based on ex vivo cell culture 
experiments [23-25]. Inconsistent with the published dogma, these 
studies demonstrate that Noggin plays a key role in the process of 
hMSC osteogenic differentiation, suggesting an anabolic effect of 
Noggin [26]. Interestingly, elevated circulating Noggin levels in obese 
humans suggest that Noggin plays a putative role in human energy 
balance and body weight regulation [20]. Therefore, it has been 
suggested that Noggin may serves as a novel biomarker  for obesity 
[20]. 

In conclusion, it will be of value to establish BMPs and its respective 
antagonist as (i) distinct and (ii) complimentary clinical biomarkers 
of the depicted adult tissue degenerative diseases to ascertain early 
identification of disease onset and progression. Interestingly, the 
combinational use of BMP6, Noggin and SOST (an additional BMP/
WNT antagonist) has been suggested to significantly predict the 
progression of esophageal squamous cell carcinoma [27,28]. In the 
future, this combinatory usage of BMP agonist and BMP antagonist 
as clinical biomarkers might facilitate precise identification of onset 
and progression of imbalanced BMP signalling driven disorders 
such as muscular atrophy, osteopenia and obesity which might 
allow for precautious intervention to acquired consecutive systemic 
implications such as osteoporosis or diabetes. 
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