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Abstract

The basket trial is a recent development in the design of clinical trial. It 
tests the same treatment on several different related diseases in a single trial 
and reduces cost and enhances efficiency. The group sequential trial design 
is commonly used for phase II trials, in which the trial is monitored in several 
stages and may terminate before the planned end if significant inefficiency 
is detected. While most existing basket trials are for continuous data, binary 
data are commonly used in phase II clinical trials. This article will study group 
sequential basket trial for binary data. We use frailty model to account for the 
dependence among the different diseases. Simulation studies are carried out to 
evaluate the performance of the trial.

Keywords: Basket trial; Binary response; Decision boundary; Group 
sequential clinical trial; Shared frailty model

Introduction
The basket clinical trial design [1-5] is introduced recently to 

clinical trials. Different from traditional clinical trials, which examine 
one treatment for one targeted disease, the basket design examines 
one treatment on several different (but often related) diseases in a 
single trial. By this way, it explores much more potential of the 
treatment and reduces costs and time compared with separate trials 
on different diseases. Another motivation for this type of design is to 
examine a common response (such as a biomarker response) across 
multiple diseases (tumors). The number of patients with a putative 
biomarker within a single disease is small, which makes it difficult 
to enroll adequate number of patients in a conventional trial and 
the basket trial which pools the responses of the same biomarker 
from all the patients with different diseases makes the trial possible, 
as the enlarged sample size enables the trial be powered adequately. 
The rationale for basket trial is that the fundamental classification 
of disease is the molecular subtypes, not disease types [4-10]. The 
disadvantage of this trial design is that inactive responses from some 
disease patients may dilute the pooled signal and trigger failure of 
the entire trial. Thus, this type of trial has been used primarily for 
exploratory settings [4,11]. Described several examples of such trials 
in cancer studies, in which six to ten different indications from the 
same biomarker entered the same trial. They concluded that in their 
example, a confirmatory study of 120-350 patients has the potential 
to result in approval of up to 10 indications. Apparently if patients 
of each indication enter the trial separately, the evidences will be too 
weak for approval due to insufficient sample sizes.

The group sequential (or multi-stage) design is commonly used 
in phase II and III clinical trials to evaluate a new treatment against 
some existing one(s) [12-21]. In contrast to the non-sequential 
clinical trial, the group sequential trial allows early stopping of the 
trial before the planned end, if extreme outcome is detected at some 
intermediate stage.

Most of the existing basket trials are for continuous endpoints. 
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In practice, binary data are commonly used in clinical trials. Here 
we study group sequential basket trial for such data. As mentioned, 
patients with different diseases enter the trial through some common 
factor(s) (such as a biomarker), thus the underlying diseases are 
generally not independent. We use frailty model to account for the 
shared dependence among the different diseases. Simulation studies 
are carried out to evaluate the performance of the trial.

Method
With basket trial design, patients with several different diseases 

are on the same trial with the same treatment. The goal is to assess 
the efficacy of the treatment. In this type of trial, patients with the 
same genetic mutations are brought into the trial, but it is known 
from diagnosis that their locations of cancer are different and thus 
the patients have different types of cancer.

In this study, we concentrate on binary response. Assume there 
are k stages in the trial, up to stage l, the observed data are (xi,δi) for the 
ith patient, i=1,…,nl (l=1,…,k). xi=1 or 0 if the ith patient has positive 
or negative response to the treatment; δi is the disease indicator, δi=j 
if the ith patient has disease type j, j=1,…,d. Let I(⋅) be the indicator 
function,
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= δ =∑ be the cumulative sample size for the jth disease 
at the end of trial stage l, denote xi|j=xi|(δi=j), i.e., the ith patient given 
disease type j, and Sl=(Sl1,…,Sld).
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We assume xi|j~Bernoulli(pj) for all i, then Slj~Binomial(nlj,pj).

For phase II clinical trial, often the total number of patients 
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=∑∑  is small (typically 10<n<100, 2≤d≤10 and 2≤k≤10). The 
hypothetical population means positive response is p=(p1,…,pd)’. We 
are interested in testing the null hypothesis

H0:p≤p0 vs H1:p>p0, 

where p0=(p01,…,p0d)’ is the given vector of threshold values for the 
responses to be effective. The diseases themselves are dependent via 
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the shared common factor(s), for example, the common biomarker(s) 
which brought the patients to the trial. Also, the observations of 
responses Slj’s are dependent. With given marginal distributions, a 
commonly used method to model dependence among them is to use 
the copula [22]. For multiple binary outcomes, there are a number of 
methods using copula, such as the multivariate log it copula model 
[23]. For binary outcome, a popular copula is the Frank copula [24]. 
It has been applied in the analysis of familial binary data [25]. Given 
d marginal distribution functions F1(x1),...,Fd(xd), the Frank copula 
combines the margins into a joint distribution of the following form
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dependence between any pairs of (Xi,Xj) can be explained by the 
relationship between the odds ratio and a function of α  [25]. 
Although the Frank copula (or other copula) gives closed form for the 
joint distribution and the dependence can be explained, it is not easy 
to use. For example, we will evaluate the conditional distributions and 
some quantities via simulation and sampling from Cα(F1(x1),…Fd(xd)) 
(or other copula distribution) are not easy, so we propose a simpler 
model below.

We use shared frailty to model the dependence among the 
disease responses Sl. With this method, the dependences among the 
diseases can be characterized in a simple way, without specifying 
a particular dependence structure on the joint distribution of the 
diseases. Let C be the shared common factor of the diseases Xi|j’s and 
pj(C)=P(Xi|j=1|C) be the conditional probability of disease type j. We 
assume that conditioning on C, the test statistics for the diseases are 
independent, i.e.
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Thus, the joint law of Sl is given by 
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In particular, we assume

P(Xi|j=1|C=c)=1-P(Xi|j=0|C=c)=exp(-cλj), λj>0,(j=1,…,d),

where C~Gamma(γ,γ)(γ≥0) with density 1
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γ
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γ
. λ can either 

be obtained from prior studies, or to be estimated from the current 
data and λj and p0j are related by
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The covariance between individuals with disease i and j(1≤i,j≤d) 
is

Cov(Xi,Xj)=E(XiXj)-E(Xi)E(Xj)=E[E(XiXj|C)]-p0ip0j
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At each stage l, the parameter γ will be estimated by the maximum 
likelihood estimate l
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Also, conditioning on Sk, the distribution of Sl is 
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w.ith P(Sl|γ) given in (3).

The above method using a shared common factor to describe 
the dependence relationship among several variables is called 
shared frailty model in statistics [26,27] and has appeared in many 
applications [28-31]. The choice of Gamma distribution for C is also 
common and convenient to use.

Without the shared frailty assumption, one must use another 
method to model the dependence among the multiple binary 
responses (S1,…,Sk). One simple joint model for binary responses 
is the multinomial distribution. However, this distribution is 
inappropriate for this problem, since for the multinomial distribution, 
once the values of (S1,…,Sk-1) are known, the value of Sk is determined. 
Apparently, the observations of our problem were not obtained this 
way. Except for multinomial distribution, there are few options for 
a joint model which is simple to use. The copula model described in 
Section 2 is a general way for modeling dependence, but as mentioned 
before, this model is also complicated to use for our case. In contrast, 
the frailty model described above is relatively simple to use, without 
specifying a particular dependence structure on the joint distribution 
of the diseases.

Testing each single hypothesis
In practice, it is of interest to test the effect of the treatment on 

each of the disease types, which can be formulated as H0j:pj≤p0j vs 
H1j:pj>p0j,(j=1,…,d).

To test H0j vs H1j at the lth interim stage, a simple way is just 
use the statistic Slj(j=1,…,d). However, that is the classical trial, not 
the basket trial. In the latter trial, we want to use the information 
across all the diseases to perform each single hypothesis. To borrow 
information from all the disease types, let Sl,-j be Sl with the jth 
component removed, we use the conditional statistic Slj|Sl,-j, which 
has distribution for
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Let (alj,blj) be the decision boundary such that, with αlj be 
determined in Section 2.2,

PHo(Slj≤ alj|Sl,-j)≤αlj, PHo(Slj≥blj|Sl,-j)≤αlj.

Note that the boundaries (alj,blj)’s depend on the Sl,-j’s, so the 
decision at each stage is data dependent, such data dependent 
procedure is favored from the Bayesian point of view. If Slj≤ alj, H0j 
is accepted; if Slj≥blj, H0j is rejected. For given value of (Slj,Sl,-j), the 
boundaries(alj,blj)(j=1,…,d;l=1,…,k) can be computed using (4) and 
(3).
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If H0j is either accepted or rejected at stage l, then data on the jth 
disease will be removed and the trial moves on based on the remaining 
data. If Slj∈(alj,blj), the trialon disease j is continued to the next stage.

However, the conditional distribution (4) is not easy to evaluate. 
Below we use approximate method. Note that approximately 
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lj j jj

lj

S
T N u w

n
=  with, ( ) ( )0 0 0 0, 1 .j lj j jj j j ju n p w Var X p p= = = −  Let Tl=(Tl1,…

,Tld)′. Similarly, Tl~(u0,Ω), with Ω=(wij)d*d and wij=Cov(Xi,Xj) given 
in (2). Let Tl,-j be Tl with the jth component removed. Let Ω-j be 
the (d-1)*(d-1) matrix of Ω with jth row and jth column removed, 
w-j be the jth row of Ω and with wjj removed, u0,-j be u0with the jth 
component removed. Then approximately Tlj|Tl,-j~N(ul,j,wl,j), where. 
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Tlj~N(u0j,wl,jj). Its boundaries are computed similarly as
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Family-wise type I error
For group sequential clinical trial, the family-wise type I error is 

an important issue. It requires, for given significance levelα,

PH0(RejectH0)≤α

Let α(⋅) be a non-decreasing function on [0,1] with α(0)=0 
and α(1)=α, in the case of two-tests and two-stages, [32] proposed 
boundary (c1,c2) in their case by
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α = α with α0 determined 
below.

In our case, we define rejection of H0 in the strict sense as: at least 
one rejection of the tests at any of the stages. We only consider the 
case of k=2 stages. The case k>2 is similar. In this case the family-wise 
type I error is

PHo(RejectH0)=PHo(at least one rejection at stage I)+PHo(no 
rejection at stage I and trial continue, at least one rejection at stage II)

Note that

PHo(at least one rejection at stage I)=1-PHo(no rejection at stage I)
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Similarly,

PHo(no rejection at stage I and trial continue, at least one rejection 
at stage II)

=PHo(Slj≤blj, all j, at least one Slj>a1j;S2j>b2j for at least one j)

=PHo(Slj≤blj, all j; S2j>b2j for at least one j)

-PHo(Slj≤blj, Slj≤alj all j, S2j>b2j for at least one j)

=PHo(Slj≤blj, all j; S2j>b2j for at least one j)

-PHo(S1j≤a1j all j; S2j>b2j for at least one j)

=PHo(Slj≤blj, all j)-PHo(Slj≤blj, all j; S2j≤b2jallj)

-PHo(Slj≤alj, all j)+PHo(Slj≤alj, all j; S2j≤b2jallj)
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used conditioning to evaluate the probabilities, for example,

PHo(Slj≤blj, all j; S2j≤b2jallj)
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Collecting terms, the family-wise type I error for the two-stage 
case is
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For given α (typically α=0.05), we solve α0 from the above 
equation, then get 0

lj
lj

n
n

α = α  and then based on these alj’s, to compute 
the boundaries (alj,blj)’s via simulation.

Simulation Study
Our simulation study has two parts: evaluating the performance 

of the basket trial under the model assumption of Section 2 and 
comparing it with the classical trial; investigating the sensitivity of the 
distributional assumption of the shared frailty C. They are described 
below.

Simulation set up
The simulation can be carried out for any given (k,d,n1,…,nk). 

Here we only describe it for k=2,d=5,(n1,n2)=(200,100) with various 
choices of parameters. Set p0=(p0,…,p0), for p0=0.4,0.5,0.6, respectively. 
We want to test H0:p≤p0 vs H1:p>p0. Set γ=1 and 0.5, respectively and 
q=(0.2,0.2,0.2,0.2,0.2).

To sample the data, for i=1,…,M (typically M≥10,000), do the 
following:

(1) Sample (n11,…,n15)~Multinomial(n1,q),(n21,…,n25)~ 
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Multinomial (n2,q).

(2) Given the nlj’s, sample C~Gamma(γ,γ), then given this c 
sample Sl from (1), for l=1,2. i.e., given C=c, for fixed l, the Slj’s are 
independent Binomial(nlj,pj(c)).

(3) Compute the αlj’s as in Section 2.2 and find the (alj,blj)’s given 
in Section 2.1.

(4) Test the H0j’s at stage l=1,2, using Sl=(Sl1,…,Sld) and the 
(alj,blj)’s.

(5) Set vi=1 is H0 is rejected, otherwise vi=0. Then the simulated 

family-wise type I error rate is

1

1 .
M

i
i

v
M

∧

=

α = ∑
Results

Below we show the simulation results for six different choices of 
parameters compute the decision boundaries of the basket trial for 
each disease at each stage and compare the corresponding boundaries 
with the independent classical trials. We assume the statistics Slj’s are 
used to test the H0j’s in the basket trial. The results are shown in Tables 
1-6, in which (alj,blj) is the decision boundary for the basket trial at 
stage l for disease j, 

~ ~
( , )lj lja b  is that for the classical trial. In square 

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (20, 36)[16] (9, 28)[19] 42 46 0.00471

2 (20, 36)[16] (8, 26)[18] 27 42 0.00430

3 (18, 33)[15] (7, 24)[17] 33 39 0.00400

4 (16, 31)[15] (5, 21)[16] 22 33 0.00338

5 (18, 34)[16] (7, 25)[18] 34 40 0.00409

2 1 (30, 48)[18] (17, 38)[21] 55 68 0.00696

2 (25, 42)[17] (12, 31)[19] 34 53 0.00542

3 (24, 41)[17] (13, 32) [19] 50 56 0.00573

4 (28, 45)[17] (13, 32)[19] 26 56 0.00573

5 (30, 49)[19] (16, 37)[21] 49 67 0.00685

Table 1: Summary of simulation results.

Stage Disease (alj,blj)
~ ~

( , )lj lja b slj nlj αlj

1 1 (7,24)[17] (14,33)[19] 2 47 0.00481

2 (0,15)[15] (8,25)[17] 13 33 0.00338

3 (4,21)[17] (14,32)[18] 18 46 0.00471

4 (5,21)[16] (12,30)[18] 1 42 0.00430

5 (2,16)[14] (8,24)[16] 0 32 0.00327

2 1 (14,33)[19] (22,42)[20] 4 64 0.00655

2 (9,28)[19] (20,40)[20] 30 60 0.00614

3 (12,31)[19] (22,42)[20] 19 64 0.00655

4 (14,33)[19] (21,42)[21] 1 63 0.00645

5 (7,25)[18] (15,34)[19] 9 49 0.00501

Table 2: Summary of simulation results.

Stage Disease (alj,blj)
~ ~

( , )lj lja b slj nlj αlj

1 1 (6,22) [16] (13,30)[17] 8 36 0.00368

2 (6,21) [15] (12,29)[17] 0 34 0.00348

3 (9,26) [17] (17,35)[18] 7 43 0.00440

4 (9,26)[17] (18,36)[18] 18 45 0.00460

5 (8,24)[16] (16,34)[18] 15 42 0.00430

2 1 (20,39)[19] (27,47)[20] 24 61 0.00624

2 (19,37)[18] (24,44)[20] 17 57 0.00583

3 (20,39)[19] (26,46)[20] 21 60 0.00614

4 (20,39)[19] (27,47)[20] 28 62 0.00634

5 (19,38)[19] (26,46)[20] 26 60 0.00614

Table 3: Summary of simulation results.

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (26,42)[16] (19,37)[18] 47 47 0.00481

2 (23,39)[16] (15,33)[18] 29 40 0.00409

3 (21,35)[14] (12,29)[17] 19 34 0.00348

4 (25,41)[16] (18,36)[18] 42 45 0.00460

5 (18,33)[15] (12,29)[17] 34 34 0.00348

2 1 (36,55)[19] (27,47)[20] 49 62 0.00634

2 (40,59)[19] (31,52)[21] 58 69 0.00706

3 (29,46)[17] (20,38)[18] 29 48 0.00491

4 (38,57)[19] (30,51)[21] 61 67 0.00685

5 (30,48)[18] (23,42)[19] 52 54 0.00552

Table 4: Summary of simulation results.

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (0,16)[16] (9,27)[18] 17 36 0.00368

2 (5,21)[16] (12,30)[18] 2 42 0.00430

3 (7,24)[17] (14,32)[18] 0 46 0.00471

4 (2,17)[15] (10,27)[17] 12 37 0.00379

5 (4,19)[15] (11,28)[17] 4 39 0.00399

2 1 (6,24)[18] (17,37)[20] 33 54 0.00552

2 (17,36)[19] (23,45)[22] 3 68 0.00696

3 (13,32)[19] (22,43)[21] 17 65 0.00665

4 (9,27)[18] (18,38)[20] 17 56 0.00573

5 (12,30)[18] (18,39)[21] 4 57 0.00583

Table 5: Summary of simulation results.

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (5,23)[18] (10,28)[18] 5 47 0.00481

2 (1,17)[16] (7,25)[18] 24 40 0.00409

3 (2,17)[15] (5,22)[17] 0 34 0.00348

4 (5,22)[17] (9,27)[18] 1 45 0.00460

5 (2,17)[15] (5,22)[17] 2 34 0.00348

2 1 (5,18)[13] (15,35)[20] 5 62 0.00634

2 (3,17)[14] (17,38)[21] 24 69 0.00706

3 (1,14)[13] (10,28)[18] 2 48 0.00491

4 (7,21)[14] (16,37)[21] 1 67 0.00685

5 (1,14)[13] (12,31)[19] 10 54 0.00552

Table 6: Summary of simulation results.
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bracket [blj-alj] is the length of the interval (alj,blj), similarly for 
~ ~

[ ]lj ljb a−

.The shorter the interval length is, the more accurate the decision will 
be. We see from the following tables that the interval lengths of the 
basket trial are uniformly shorter than those of the classical trial, due 
to the use of cross information from all the diseases.

(1) p0=0.4, γ=1, 1 21.2, 1.2
∧ ∧

γ = γ = .

We see that the results from the basket trial are more reasonable. 
For example, at stage 1, for disease 2, a total response of 27 out of 42 
patients is significant for independent trial. But in view of information 
across all the diseases, it is not significant enough to reject H02 at the 

first stage. Similarly for disease 4 at stage I and disease 2 at stage II.

(2) p0=0.5, γ=1, 1 21.1, 1.8
∧ ∧

γ = γ = .

There are some differences between the basket and classical trial 
decisions. For example, at stage 2, for disease 3, a total response of 
19 out of 64 patients is small enough to accept H03. But in view of 
information across all the diseases, it is not small enough to accept 
H03 at the second stage. Similarly for disease 5 at second stage. Only 
for disease 2 at stage 2, a total response of 30 out of 60 patients is 
significant for basket trial, however is not significant for independent 
trial.

(3) p0=0.6, γ=1, 1 21.3, 1.4
∧ ∧

γ = γ = .

At stage 1, for disease 1, a total response of 8 out of 36 patients 
is small enough to accept H01 and early stop the trial for independent 
trial. But in view of information across all the diseases, it is not small 
enough to accept H01 at the first stage. Similarly for disease 1 at stage 
II, disease 4 and 5 at stage I, disease 3 and 5 at stage II.

(4) p0=0.6, γ=0.5, 1 21.1, 1.6
∧ ∧

γ = γ = .

At stage II, for disease 1, a total response of 49 out of 62 patients 
is significant for independent trial. But in view of information across 
all the diseases, it is not significant enough or eject H01 at the second 
stage. Similarly for disease 2 at stage II.

(5) p0=0.5, γ=0.5, 1 21.1, 1.3
∧ ∧

γ = γ = .

We see that at stage I, for disease 1, a total response of 17 out of 
36 patients is significant enough to reject H01 for basket trial. But for 
independent trial, it is not significant enough to reject H01 at the first 
stage. Similarly for disease 1 at stage II. However, for disease 4 in stage 
II, a total response of 17 out of 56 patients is small enough to accept 
H04 for independent trial; it is not small enough for basket trial.

(6) p0=0.4, γ=0.5, 1 21.7, 0.1
∧ ∧

γ = γ = .

We see that at stage I, for disease 2, a total response of 24 out of 
40 patients is significant enough to reject H02 for basket trial. But for 
independent trial, it is not significant enough to reject H02 at the first 
stage. Similarly for disease 2 at stage II. However, for disease 3 in stage 
II, a total response of 2 out of 48 patients is small enough to accept H03 
for independent trial; it is not small enough for basket trial. Similarly 
for disease 5 at stage II.

Sensitivity analysis on the distribution of C
In our frailty model in Section 2, the shared frailty C is assumed 

as Gamma(γ,γ) distribution, which is a common practice in many 
statistical applications. Here we want to investigate how sensitive the 
results are to this assumption. Below we simulate three cases. In the 
first two cases, C is not from a Gamma(γ,γ) distribution, but we still 
treat it as Gamma(γ,γ) in the analysis. In the third case, C is from 
Gamma(γ,γ) distribution. The results are compared and shown in 
(Tables 7-9).

(1) The data are generated with C~N(1.1). We still use the method 
and treat C as Gamma distribution p0=0.6.

(2) The data are generated with 12 12(1 ,1 )
2 2

C Uniform∼ − + . We still 
use the method and treat C as Gamma distribution p0=0.6.

(3) The data are generated based on C~Gamma(1,1). p0=0.6.

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (15,33)[18] (21,39)[18] 3 50 0.00512

2 (10,27)[17] (17,35)[18] 13 43 0.00440

3 (6,22)[16] (15,32)[17] 24 39 0.00399

4 (6,21)[15] (12,29)[17] 10 34 0.00348

5 (6,21)[15] (12,29)[17] 8 34 0.00348

2 1 (27,47)[20] (35,56)[21] 8 76 0.00778

2 (16,34)[18] (25,45)[20] 24 59 0.00604

3 (14,33)[19] (25,45)[20] 30 58 0.00593

4 (16,34)[18] (24,44)[20] 15 57 0.00583

5 (12,30)[18] (21,39)[18] 16 50 0.00512

Table 7: Summary of simulation results.

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (12,29)[17] (21,39)[18] 9 50 0.00512

2 (9,25)[16] (17,35)[18] 7 43 0.00440

3 (4,19)[15] (15,32)[17] 24 39 0.00399

4 (5,20)[15] (12,29)[17] 4 34 0.00348

5 (5,19)[14] (12,29)[17] 7 34 0.00348

2 1 (26,46)[20] (35,56)[21] 18 76 0.00778

2 (17,35)[18] (25,45)[20] 18 59 0.00604

3 (14,33)[19] (25,45)[20] 32 58 0.00593

4 (17,36)[19] (24,44)[20] 7 57 0.00583

5 (12,30)[18] (21,39)[18] 18 50 0.00512

Table 8: Summary of simulation results.

Stage Disease (alj,blj) ~ ~
( , )lj lja b slj nlj αlj

1 1 (9,25)[16] (21,39)[18] 11 50 0.00512

2 (5,20)[15] (17,35)[18] 15 43 0.00440

3 (5,20)[15] (15,32)[17] 3 39 0.00399

4 (2,17)[15] (12,29)[17] 4 34 0.00348

5 (3,17)[14] (12,29)[17] 3 34 0.00348

2 1 (24,44)[20] (35,56)[21] 29 76 0.00778

2 (16,34)[18] (25,45)[20] 20 59 0.00604

3 (17,35)[18] (25,45)[20] 9 58 0.00593

4 (15,33)[18] (24,44)[20] 22 57 0.00583

5 (12,30)[18] (21,39)[18] 12 50 0.00512

Table 9: Summary of simulation results.
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From our simulation studies, the results are not very sensitive 
to the assumption of the shared frailty C. However, the Gamma(γ,γ) 
distribution assumption makes the computation much easier.

Conclusion
A frame work for basket trial with binary outcome is proposed and 

investigated, in which the joint distribution of the different diseases is 
modeled via shared frailty. Simulation study is conducted to evaluate 
the performance of the method. By borrowing information across 
all the related diseases, the results from the basket trial are more 
reasonable than those from the classical in dependent trial.
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