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Abstract

Linkage analysis is one of the major approaches for genetic studies of 
human diseases, for mapping putative genes or studying relationships between 
loci. Many of the existing methods use identity by descent data, or a particular 
familial structure, which may not be fully available in some practices. Here 
we propose a likelihood model for linkage analysis with pedigrees, along with 
segregation and regressive analysis. Without requiring identity by descent 
data, this model can be used for both quantitative and qualitative traits to study 
trait-trait linkage with/without observed genotypes, or trait-marker linkage with 
observed marker genotype, which include sib pair analysis as a special case. 
This model is applied to a real data example for illustration.
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families. Let yf,, ym and yo be d-dimensional observations of the father, 
mother and off spring respectively, where

	  

and n is the number of sibs in the nuclear family. Denote y = (yf, 
ym, yo)

T and its underlying random variable by Y = (Yf, Ym, Yo)
T. Let 

L1 and L2 be the two loci under consideration for linkage analysis, we 
assume there are two alleles at each locus, with a1|b1 for L1 and a2 |b2 for 
L2. We code the genotype at each locus as 0, 1 and 2 for b|b, a|b (b|a) 
and a|a respectively, r be the recombinant fraction - the probability 
that a gamet is recombinant, n be the sib size for the family. Let gfi, gmi 
and gji be the genotypes of father mother and the j-th sib at locus i (i 
= 1, 2), p1i and p2i be the proportion of the corresponding genotype at 
locus i. Let pij be the proportion of the haplotype	  

be the transmission probability of the sibs genotype given those of 
the parents. Note that there are 9 possible composite genotypes at the 
two loci for each individual. Consider the multivariate model and the 
notations as in Yuan and Bonney [10], assume unknown phase, the 
likelihood for a given nuclear family can be written as

	

						      ,        (1)

where, each summation is over all the genotypes of that individual 
at the two loci, in its general form with un observed genotypes at 
both loci, and T(gj |gf , gm) is the transmission probability for the case 
of unknown phase. In model (1) the conditional densities f (yf |gf), 
f (ym|yf, gf, gm) and f (yj |yf, gf, ym, gm, gj) can be any general densities. 
Latter on for easy of exposition and convenience of application, we 
will assume that f(yf |gf) is the d-dimensional normal density with mean

Introduction
The advances in biotechnology have led to the identification 

of more and more disease genes without the knowledge of the 
biochemical nature of the diseases. Linkage analysis is one of the most 
commonly used approaches for mapping human disease genes, which 
is often the first step to identify the chromosomal location of them, 
and may followed by various diagnosis and ultimately therapeutic 
treatment for these diseases. There are numerous methods, 
parametric, nonparametric and semi-parametric, for link- age/
association analysis [1-6]. Furthermore Kruglyak et al. [7] proposed 
a unified multipoint approach, Hor- vath et al. [8] considered family 
based approach for this problem, Sung et al. [9] suggested a multipoint 
analysis using Markov chain Monte Carlo algorithm. Many of them 
use the Identity by Descent (IBD) data, or require some particular 
familial structure such as infected relative pairs or extreme discordant 
sib pairs. But in practices IBD data cannot be uniquely determined 
or not fully available, and particular familial structure are difficult to 
collect, while marker genotyping data are commonly available. Many 
of these models are not for the study of trait-trait genetic relationship; 
some of them use only part of the data information, for example the 
squared trait value difference. Although robust, the nonparametric 
model-free methods may suffer potential loss of efficiency since they 
do not use knowledge of traits generating mechanism. In addition, 
complex traits are often affected by covariates such as sex, age, race 
and environmental factors. Here we consider a simple likelihood 
model for linkage analysis for pedigrees, along with segregation and 
covariates analysis based on the likelihood principle. This model can 
be used to study trait-trait linkage with/without observed genotypes, 
or trait-marker linkage with observed marker genotype, which include 
sib pair analysis as a special case. Using this model as an illustration, 
we analyze a set of nuclear family data to reveal the genetic connection 
of two traits which are known have close phenotypic relationships. 
Some possible extension of future work is discussed.

Methods
We describe the method for quantitative traits and nuclear 

family, the cases for qualitative traits or combined traits are similar, 
the general pedigree case can be analyzed by breaking it into nuclear 
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				    ,

and variance matrix Σf, where the χ(gf = i) denote the event that 
the father’s composite genotype if of type i, β’s are d-dimensional 
vector of parameters and xf is the covariates matrix for the father; in 
the same manner,  f(ym|yf , gf , gm) is the conditional normal density with 
mean

						      ,

where				  

and variance matrix 1
m p f p

−Σ −Ω Σ Ω , and Σm is the variance matrix 
of mother alone and Ωp is the between-parents correlation matrix. 
Furthermore, we take K(gf,gm) as the K-function as in Yuan and Bonney 
[10] which is an adjustment factor for the product of the penetrance 
of the sibs given the parents genotypes and f(yj|yf, gf, ym, gm, gj) is the 
conditional normal density function with mean

				               ,

where Ωsp=(Ωsf,Ωsm) is the sib-parents correlation matrix which 
is composed of the sib-father and sib-mother blocks of correlation 
matrices,

 	

and

				  

and variance matrix 1
s sp p sp

−Σ −Ω Σ Ω . Note that although we use the 
same coding for the two loci, but f1=0 and f2=0 do not mean the same 
gene at the two loci. The specification of the joint genotype proportion 
pij’s and the transmission probabilities T(gj|gf, gm) is put expression (10) 
latter, and its values are given in Table II.

Note in model (1), typically there are many zero components of 
the transmission probability T(gj|gf, gm), so that it will be more efficient 
to evaluate T(gj|gf, gm) first, if its non-zero then compute the penetrances 
for the family members, otherwise ignore the computation for 
that combination of genotypes. The T(gj|gf, gm)’s are functions of the 
recombination fraction r. When the phase is known, (1) should be 
modified as

	

                                                    		               ,        (2)

where T1(gj|gf,gm; h(gj,gf,gm)) is the transmission probability for the give 
phase configuration h(gj, gf, gm) of (gj|gf, gm). So (1) is can be rewritten as

		

						                  ,

where Σh(gj,gf,gm) is summation across all different phase 
configurations h(gj, gf, gm)s of (gj, gf, gm), and Ρ(h(gj, gf, gm)) is the probability 
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of configuration h(gj, gf, gm). The number of different phase configurations 
of (gj, gf, gm) depends on the number of heterozygote’s in it. Note 
here we have two loci, each locus has two genotypes, and the 
genotypes of the parents are assumed independent, as common in the 
literature. If there are k (0 ≤ k ≤ 6) heterogygotes in (gj, gf, gm), then 
there are 2k different phase configurations, and each has probability 
P (h(gj, gf, gm))=1/2k. This method needs to enlist all the different phase 
configurations, since different triple (gj, gf, gm) may have different 
number of phase configurations, this method will not be easy in 
terms of programming. A more convenient way in programming is 
to treat each genotype as heterozygote, and sum over all the 26=64 
phase configurations each with probability 1/64. Although this way 
will have some redundant computations, but is a general procedure, it 
does not require to enlist the phase configurations for each triple (gj, 
gf, gm), and so is easy to programming. The values of T(gj|gf, gm) are given 
in Table II in the Appendix, for all possible composite genotypes of 
(gj, gf, gm). This is a general procedure for programming without the 
knowledge of the phase configuration for each triple.

Linkage between trait loci
For simplicity, we only consider the case of two phenotypes 

controlled by their own loci with unobserved genotypes at both loci.

Linkage between trait and marker loci
Suppose the data y is controlled by one locus with unobserved 

genotype, and we have the genotype g2 of y at the marker locus, a 
common assumption is that, g2 has no epistatic interaction with y, 
i.e. g and y has no direct connection, but g2 has relationship with 
the unobserved genotype of y, and phase unknown. In this case (1) 
becomes 

	

					         ,	 (3)

here the summation is only for all the genotypes at the trait locus.

Point analysis
One way of multi-point linkage analysis is to perform 3-point 

analysis step by step across the segment span the multipoint. Here 
we use our model to address the 3-point analysis. In this problem, 
we have two markers and an unknown disease locus, which may lie 
between the two markers or outside the interval between them. We 
assume that the case is unknown, while the model is similar when the 
phase is known. Again, we only need to specify the likelihood for one 
family. The composite genotypes are gf = (gf1, gf2, gf3) for the father, 
gm= (gm1, gm2, gm3) for the mother, and gj= (gj1, gj2, gj3) for the j-th sib. 
We assume the first and second genotypes in the composite genotype 
of each individual are the observed genotypes at markers 1 and 2, the 
third marker gj3 is the unobserved disease genotype, assuming marker 
gj1 is located at the left side of marker gj2 on the chromosome. Since 
we have three loci, there are three recombination fractions for the 
three pair wise loci. Denote r1 as the recombination fraction between 
marker 1 and the disease marker, r2 as that between marker 2 and the 
disease, r3 as that between the first two markers, and T(gj1, gj2, gj3|gf1, 
gf2, gf3); (gm1, gm2, gm3)) the 3-point transmission probability, which is a 
function of (r1 , r2 , r3 ). In this case, (3) is rewritten as

( )
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						              (4)

Note in this model, although f (·|·) has the same form as in model 
(1), but the mean µ’s has 27 coefficients for all the possible different 
3-point composite genotypes, instead of 9. In equation (4) the key is 
the specification of the 3-point transmission probability. Note that the 
three recombination fractions are not independent. During meiosis, 
when there is a cross-over at marker 1, and no cross-over at the other 
two loci, then there is a recombination event between marker 1 and 
the disease marker, it is also a recombination event between marker 1 
and marker 2; however if there is also a cross-over at marker 2, then 
there is no recombination event between marker 1 and marker 2. If 
we consider all the possibilities of crossovers at the 3 markers, the 
relationships of r1, r2 and r3, and the combinatory outcomes of the 
3-point gametes can be complicated. In this case a complete Table 
of all the 3-poin transmission probabilities as in Table II will have 
729×27 entries. So it is impractical to list all such probabilities. One 
may use Haldane’s model (Lange 1997, p110) for the specification, 
but this model is not easy to implement into software. Observe that

	

Similarly,

and

Where Ti (·|·) is a function of ri and its values are given in Table II, 
just replace r there by ri (i = 1, 2, 3). The values of P (gj|gf, gm) are given 
in Table III for convenience. So we specify the 3-point transmission 
probability as

Finally, the MLE (rˆ1, rˆ2, rˆ3) of (r1, r2, r3) is computed. If rˆ1 = 
max {rˆ1, rˆ2, rˆ3}, the disease locus is more likely lies on the right side 
of marker 2; if rˆ2 = max {rˆ1, rˆ2, rˆ3}, the disease locus is more likely 
lies on the left side of marker 1; If rˆ3 = max {rˆ1, rˆ2, rˆ3}, the disease 
locus is more likely lies between markers 1 and 2.

Multi-point analysis
In genome wide linkage analysis, there are often hundreds of 

markers to be considered. Instead one marker at a time, it is known 
that analyzing all the makers together will enhance the power. Let k 
be the total number of markers under consideration, there are k (k − 
1)/2 pair wise recombination’s fractions rijs. It is difficult to estimated 
all the recombination’s in a model, and it is unnecessary, but usually 

the map distances of the markers are known, so the recombination 
fractions among the markers can be estimated automatically using 
map functions, for example the Hadane function or Kosamby 
function. If we know actually all the particular marker positions 
on the chromosome, their recombination’s fractions then can be 
determined. So if we let r0j be the recombination fraction between 
the disease locus and the locus of marker j, which are the only un- 
known recombination fractions to be estimated, we assume that the 
other rijs (i, j ≠ 0) are known. As far as we know, usually the markers 
are from haplotype blocks, different blocks are weakly dependent, 
and the markers within the same block are strongly dependent, but 
not perfectly dependent. For some blocks, only one marker is typed, 
while in some other blocks there are more than one marker. Then a 
likelihood using all the traits as in equation (4) will be impractical as 
it will involve too many parameters. Instead, we may consider the 
likelihood only use the observed marker composite genotypes. Let 
r = (r01,...,r0k), (gf0, gm0, gj0) be the unobserved genotypes of (father, 
mother, sib), gf= (gf0, gf1,...,gfk) be the composite genotype of the father, 
gm = (gm0, gm1, ...,gmk) be that of the mother, and gj = (gj0, gj1,...,gjk) be that 
of the j-th sib. The likelihood for one family is

		  .				             (5)

Then the problems are how to specify P (gf) and how to specify T 
(gj|gf, gm)? For the transmission probability, Haldane’s model (Lange 
[11]) is not easy to use, since it requires the recombination status 
among the markers, which are always unknown with the phases. Let 
Trs = Trs (gjr, gjs|gfr, gfs; gmr, gms) be the transmission probability at marker 
loci (r, s), we can specify the transmission as in the three point case, as

					                                (6)

For r ≠ 0, the Tr,s ’s are given in Table II, with r replaced by rrs; P 
(gj|gf, gm) is the corresponding one-locus transmission probability at 
the unpaired left-over locus. Once P (gf) (and so P (gf)) is specified, T 
(gj|gf, gm) in equation (6) is a quadratic function of r. It can be applied 
to any nuclear family design.

The method in Liang et al.[12] is also simple, but it requires to 
known the trans- mitted allele status of father and mother at each 
loci, which are sometimes uncertain, or can only be inferred with 1/2 
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SNP Marker Name Map Distance(cM) Allele Lodscore

84 tsc1276837 34.24 2 1.75

146 tsc0526379 52.99 1 1.92

148 tsc0045058 53.26 1 3.35

159 tsc0527513 55.57 2 1.93

295 tsc1213381 85.42 2 2.22

319 tsc0055068 89.31 2 3.03

714 tsc0051777 172.86 2 2.57

Table 1: Linkage Results on chromosome 4 for ntth1.
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probability. Also this method applies to only to the case-parent trio 
design.

Specification of the haplotype and the transmission 
probabilities

Specification of the haplotype probability: A simple way is to 
assume linkage equilibrium between the two loci and set

						       (7)

However this assumption is inappropriate with the presence of 
linkage [13-15]. When dealing with Linkage Disequilibrium (LD), we 
usually need to consider all possible gametic disequilibrium within 
the haplotype [16], which will be very complicated for three or more 
alleles. With model (1) and (2), we can define the LD parameter as

						      (8)

In case of Hardy-Weinberg Disequilibrium (HWD), let f be the 
common HWD parameter [17,18] at the two loci, at each locus

we have

						      (9)

Where 1 ( )ij i jp P a a=  is the genotype probability at the trait locus 
and 2 ( )kj k lp P A A=  is the probability at the marker, and both of them 
satisfy the above HWD specification.

Specification of the transmission probability: Let r be 
recombinant fraction – the probability that a given sib’s genotype is a 
recombinant of those of his/her parents’. 0 ≤ r ≤ 1/2, r = 0 corresponds 
to complete linkage of the two loci, r = 1/2 corresponds to no linkage 
(Sham [19]). For the two-allele two loci case, there are 36 = 729 
possible values of T (gs|gf, gm), but only a few different ones and many 
zeros. If the genotypes are ordered, let gs = gsf||gsm, where gsf be the 
paternal gamete and gsm the maternal gamete, we have (Lange 1997).

		  T (gs|gf, gm) = T (gsf|gf)T(gsm|gm).

Given, 	 we list all the non-zero values of ( )
a b

T
A B

 
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various settings of gsf , as the following

			 

						      (10)

the values of T (gsm|gm) are the same.

Using (10) and the product T (gsf|gf) T (gsm|gm) we can get all 
the transmission probabilities in allelic representation for each sib 
genotype gsf|gsm.

We list all the non-zero values of the transmission probabilities in 

numerical notation in Table II in Appendix A. All the 81 combinations 
of parent’s genotypes are given in the second column, all those 9 for 
the sib given in the first row. An illustration of the computation of 
the entries in the table using (10) or directly by hand is given in the 
Appendix B.

Application
We analyze the data set released by the Gegetic Analysis 

Workshop14 using the pro- posed method. Recently, evidence 
has been found to relate alcoholism to genetic factors [20-22]. The 
Collaborative Study on the Genetics of Alcoholism (COGA) is a 
program to study this phenomenon extensively. The data set contains 
multiple phenotypes and genome wide scans from 229 families and 
1490 individuals, in which 720 of them have incomplete/missing 
observations. Each individual has 20 records, among which the first 
5 are i.d. or categorical, most of the other variables are continuous 
traits, including fat mass (fm) and leptin. We break the data into 
nuclear families. Sibs with missing response(s)/covariate(s) are 
deleted from the data, parents with missing response(s)/covariate(s) 
are kept in order for tracking down the family structure.

We first study the genetic association of electrophysiological 
measures related to alcoholism focusing on the NTTH phenotypes 
and the 786 Affymetrix SNPs on chromo- some 4. This chromosome 
has been shown to be involved in NTTH phenotypes in some previous 
studies.

There are four NTTH quantitative phenotypes: ntth1, ntth2, 
ntth3 and ntth4. Typically for this problem, one may perform a 
linkage analysis to pinpoint the highly spurious region, but this is 
computationally intensive and time consuming. In this dataset, the 
number of SNPs is large. For chromosome 4 alone there are 786 
SNPs. We did a two- stage analysis. The first stage is an association 
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g

A B
 

=   
 
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1

, & ;

1 1
2 2

( )
, & ;

1 1
2 2

, & ;

1 1
2 2 2 2

a a b A B
A

a b a b A B
A A

a b
T a aA B a b A B

A B

a b a b a b A B
A B B A

r r r r

  = =  


    ≠ =       



  =        = ≠      
   




         ≠ ≠               

− −




θ
0θ

∧

	 θ
∧

μ0,1 11.682(2.855) 11.659(2.904)

μ0,2 -2.146(0.464) -2.292(0.464)

α1,1 2.527(0.574) 2.591(0.480)

α2,1 1.430(0.670) 1.639(0.550)

β2,1 12.929(1.024) 12.913(1.024)

β2,2 19.558(1.192) 19.531(1.192)

β3,1 0.211(0.032) 0.210(0.032)

β3,2 0.202(0.037) 0.202(0.037)
2
1σ 212.630(12.225) 212.575(12.245)
2
2σ 289.787(16.109) 289.785(16.132)

ρw 0.636(0.023) 0.636(0.023)

ρb[1,1] 0.262(0.047) 0.262(0.047)

ρb[1,2] 0.242(0.038) 0.242(0.038)

Ρb[2,2] 0.264(0.042) 0.264(0.042)

qA1 0.736(0.313) 0.738(0.325)

qA2 0.757(0.609) 0.753(0.610)

r 0.500 0.000

loglike -4505.583996 -4505.559749

Table 2: (fm, leptin) = (Xg, sex, age).
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analysis, in which we regressed the trait on age, sex, and the SNPs, 
one at a time, across all the 786 SNPs on chromosome 4. This will 
analyze the statistical association between the phenotypes and the 
SNPs, which will provide us the phenotypes/SNPs with significant 
association for the next stage analysis. In the second stage, a formal 
linkage analysis was performed using model (1) on the SNPs selected 
from the first stage. After the two-stage analysis, we found ntth1 has 
strong linkage to some SNPs, while the trait linkage for ntth2-httn4 
is not significant. The results on ntth1 for those SNPs with significant 
linkage are presented in Table I.

From this table, we find strong linkage in four regions: SNPs 
tsc0045058, tsc1213381, tsc0055068 and tsc0051777 at chromosome 
positions 148, 295, 319 and 714, with map distances 53.26, 85.42, 89.31 
and 172.86cM; and moderate linkage in three regions: tsc1276837, 
tsc0526379 and tsc0527513 at positions 84, 146 and 159, with map 
distances 34.24, 52.99 and 55.57 cM.

Next we test the hypothesis of no linkage between the loci and 
the trait. It is known that fat mass and leptin are closely related 
phenotypically, we are interested in the genotypic relationship 
between them, and assume they are controlled by their own gene 
loci, with sex and age as covariates. Without genotype data at both 
loci, the parameters of interest include the effects of the covariates, 
the unobserved genotypes, of their allele proportions and the 
recombination fraction between the two loci. Let θ be the vector of all 
the parameters in the model, θˆ be its M.L.E. from the mixture model. 
Consider the application of model (1) with the haplotype probability 
given by (5). Let H0 be the hypothesis that there is no linkage between 
the two trait loci, i.e. H0: r = 0.5. The results are shown in Table 2 
below, where θˆ and θˆ0 are the m.l.e. of θ under the full model and 
H0 respectively (in brackets are the estimated standard deviations). 
In this case the hull hypothesis is r = 0.5 lies on the boundary of the 
parameter, instead of the standard likelihood ratio test, the 2 times 
log-likelihood ratio statistic in this case is asymptotically a 0.5:0.5 
mixture of 2

0χ  and 2
1χ

[Self and Liang, 1987], which in our case is 0.485 with an 
approximate P-value of 0.2. Thus the hypothesis H0 of no genetic 
linkage between fat mass and leptin is rejected at a high significance 
level (Table 2).

-2 log-likelihood ratio = 0.48494, with a P-value ≈ 0.2 under the 
0.5:0.5 mixture of 2

0χ  and 2
1χ .

Discussion
We have considered a simple likelihood model to study linkage 

between traits and between trait and marker loci, without requiring 
IBD data as most linkage studies do, thus makes it easy to use for both 
the quantitative and qualitative traits. The hypothesis of no linkage 
can be tested by the standard likelihood ratio under this model. The 
model is applicable to pedigree, nuclear family or sib pairs, along with 
segregation and regressive analysis. Using this model to the GWA14 
data, we find strong genetic linkage between ntth1 at some SNP loci.

The usual linkage analysis is based on the assumption of linkage 
equilibrium between loci, which is inappropriate. Some other 
approaches with combined linkage and linkage disequilibrium 
[4,15,23], this will yield more information. The disequilibrium may 
be specified as in (7) or some other measures as reviewed by Devlin 

and Risch [24]. But LD may be affected by many factors, such as 
mutation, drift, selection, population stratification or admixture, 
etc., which create difficulties in LD analysis. Our method can also be 
extended to this case along with Hardy-Weinberg disequilibrium, 
as in Wright [17] and Cockerham [18] and to different likelihood 
formulations, or even to semi-parametric and nonparametric models. 
We can also incorporate the multipoint marker information into the 
model to increase its power. Although we only presented the model 
for the two-allele case at each locus, this model cab be extended to 
multiple allele case, while the corresponding transmission matrix to 
that in Appendix A will be a real challenge. For two loci with k1 and 
k2 alleles each, one needs to compute a (n1n2)

2 × n1n2 transmission 
matrix, where ni = ki (ki + 1)/2 is the number of genotypes at the i-th 
locus. This can be partially resolved by a stepwise procedure; we can 
cut the loci to two alleles at each step, and then select the sections with 
stronger linkage for next step.

There is a trade-off between the effectiveness and robustness of 
methods. The non- parametric and semi-parametric models are in 
general robust since they require no or little model assumptions, but 
they may suffer from potential loss of efficiency by the same reason.
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