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Abstract

Finite Mixture (FM) models have received increasing attention in recent 
years and have proven to be useful in modeling heterogeneous data with a 
finite number of unobserved sub-population. It has been not only widely 
applied to classification, clustering, and pattern identification problems for 
independent data, but could also be used for longitudinal data to describe 
differences in trajectory among these subgroups. However, due to the 
computational convenience, the most types of FM models are based on the 
normality assumption which may be violated in certain real situations. Recently, 
FM models with non-normal distributions, such as skew normal and skew 
t-distribution, have received increasing attention and showed the advantages in 
modeling data with non-normality and heavy tails. One of the advantages of FM 
models is that both maximum likelihood method and Bayesian approach can be 
applied to not only estimate model parameters, but also evaluate probabilities of 
subgroup membership simultaneously. We present a brief review of FM models 
for these two types of data with different scenarios.

Keywords: Finite mixture models; Heterogeneity; Longitudinal data; Non-
normal distributions

Introduction
Over 100 years ago, the famous biometrician Pearson [1] helped 

his colleague solve a problem in accommodating apparent skewness 
of crab sample adequately by one symmetric normal distribution. 
With a strong feeling of that this population was evolving toward two 
new subspecies, he fitted a mixture of two normal probability density 
functions with different means and variances in two proportions. 
After Pearson firstly proposed the word “mixture” in statistics, not 
surprisingly, various attempts were conducted to dig deeper in this 
field. 

Most of the statistical models assume that a sample of 
observations comes from the same distribution. Sometimes, however, 
it may not be true, since the sample may be drawn from numbers 
of distinct populations in which the populations are not identified. 
In this situation of homogeneity assumption violated, Finite Mixture 
(FM) models could bring the rescue. FM models provide a flexible 
frame work to handle heterogeneous data with a finite number of 
unobserved sub-population, and also have been widely applied to 
classification, clustering, and pattern identification problems [2-5]. 
FM models have attracted considerable research interest recently 
and have been widely applied to independent data. Recently, the 
use of FM models for longitudinal data has also received increasing 
attention. This article is organized to provide a brief overview of FM 
models for these two types of data with different scenarios.

Models with normal mixture for independent data
When a FM model is a convex combination of two or more 

probability density functions, it can be formally written as a mixture 
with K component distributions:
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Where wk> 0 (k=1, 2, …, K) is the mixing weights with 1.kk
w =∑  
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In modeling independent data, FM models allow for parameter 
differences across the unobserved classes. In other words, ( )kf x  
in (1) are all from the same parametric family, but with different 
parameters. Many distributions have been applied as the parametric 
family of the components in the mixture model.

Due to the computational convenience, normal distributed 
components have been widely used [6]. It could be easily fitted 
iteratively by Maximum Likelihood (ML) via the Expectation-
Maximization (EM) algorithm [6-8]. Briefly, EM algorithm includes 
the following steps: 1) start with initial values about the mixture 
components and the mixing weights w1,…wk; 2) use the current 
parameter guess, calculate the weights (E-step), then use the 
current weights, maximize the weighted likelihood to obtain new 
parameter estimates (M-step); 3) repeat steps 1) and 2) iteratively 
until convergence of algorithm, and then return the final parameter 
estimates and component probabilities. Several researchers have 
published program for the parameter estimation of FM models 
using EM algorithm [9-12]. Additionally, FM model has also been 
studied from a semi parametric prospective [13,14]. In terms of its 
flexibility, FM model with normal distribution has been widely 
applied in different areas, including, but not limited to, medicine 
[15-17], genetics [18-21], public health [22], psychology [23,24], and 
economics [25,26].

Models with normal mixture for longitudinal data
Although most of the FM models focus mainly on independent 

data, mixtures have also been developed for modeling longitudinal 
data, where the latent classes corresponding to the components and 
individual clusters provide a better data fitting. It aimed at identifying 
multiple unobserved sub-groups, and describing differences in 
longitudinal change among these subgroups.

Generally, the density function of FM models for longitudinal 
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data can be written as
2

1
( ) ( ( , );  ( , ))
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where yi denotes a vector of repeated observations for 
subject i which is assumed to be from the kth component; 

2( ( , );  ( , ))k k ik ik k ik ikf g x xβ σ β  is the density function for kth 
component with a mean function gk (.) and variance function σk

2(.); 
βik and xik denote unknown subject specific parameters and known 
covariates, respectively. Similarly, wk>0 are the mixing weights with

1.kk
w =∑  For gk (.), both linear (polynomial) and non-linear mean 

function could be applied, but former one is more widely used, 
partially because the inference process can be conveniently carried 
out by ML approach [27]. While formularizing the FM models for 
longitudinal data, the mean functions of components can be similar 
forms with varying means and/or variance specifications, or have 
totally different mean trajectories across the components [28]. 

FM models for longitudinal data, also named as growth mixture 
models, were presented by Verbeke [29] and Muthen [27]. Growth 
mixture model is built up by combining the random effect from 
mixed effects models and finite mixtures, which allows same mean 
function but with different sets of parameter values (growth factors) 
across components capturing latent trajectory classes with different 
curve shapes [30-32]. It could be considered as an extension of the 
conventional Linear Mixed-Effect (LME) model with different 
latent classes of development. Both EM algorithm [27] and Bayesian 
methods [33,34] were used for estimating both model parameters and 
subclass membership probabilities. The relative developments, called 
latent class growth analysis [35-37], were special cases that assume no 
inter-individual differences in change within-class. In other words, it 
specifies that all individuals in one trajectory class behave the same, 
which allows more straightforward interpretations. 

All of the mixtures above had the assumption of normally 
distributed variables within each latent class. According to 
computational convenience of the normality assumption, many 
extensions and applications have been presented in different fields, 
such as medicine [38-40], psychology [41,42], social science [43-45] 
and pharmacokinetic/pharmacodynamic [46].

Models with non-normal mixture for independent data
In many real situations, however, the data contain longer than 

normal tails or atypical observations, the use of normal components 
may affect the fit of the model and, in turn, lead to biased results. The 
FM model of t-distribution was considered as an alternative, which 
provides a more robust approach of fitting mixtures and computes 
less extreme estimates of the posterior probabilities of the component 
membership [47-50]. It has proven to accommodate outliers in 
modeling data with heavy tails by an additional parameter, the degrees 
of freedom, compared to that with normal distribution. Expectation-
Conditional Maximization (ECM) algorithm [47,48] and Bayesian 
approach [51] were used to fit the FM models with t-distribution. In 
practice, FM model with t-distribution has been implemented to wide 
fields, including genetics [52,53], medicine [54-56] and engineering 
[57].

In addition to feature of heavy tails, in many applied problems, 
data commonly involve highly asymmetric feature. The FM models 
with symmetric distributions, such as normal and t-distributions 

can be misleading when handling data with skewness. Recently, 
asymmetric distribution-based mixture models, particularly, the 
Skew-Normal (SN) [58-63] and Skew-t (ST) mixture models [62,64-
67] have received increasing attention and been developed as a 
critical extension to traditional models with symmetric distributions 
for modeling data with asymmetry, heavy tails, and the presence of 
outliers. 

The FM models of SN distribution can provide a more 
appropriate density estimation to fit the asymmetric observations 
by adding an additional shape/skewness parameter, compared to 
the normal mixtures. Model fitting could be conducted by both EM 
algorithm [58,59] and Bayesian approach using Markov Chain Monte 
Carlo (MCMC) method [58,62]. Its flexibility and robustness against 
skewness has been proven in the real data, such as genetic data [68], 
transportation data [69], and environmental data [70].

As a natural extension of the student t and skew normal mixtures, 
FM model with ST distribution has showed its advantages in 
modeling data with both asymmetry and heavy tails simultaneously. 
Compared to SN and student t distribution, the ST distribution has 
extra parameters, degrees of freedom and shape/skewness parameter. 
Therefore, FM models with normal, student-t and SN distributions 
can be statistically viewed as special cases of the ST mixture 
models. Lee and McLachlan [71-73] suggested that the existing ST 
distributions could be classified into four forms, including restricted, 
unrestricted, extended and generalized forms. The EM algorithm 
was used for fitting mixtures of both restricted and unrestricted ST 
distribution [65,71,74]. The unrestricted ST mixture model has a more 
general characterization than various mixture models of restricted ST 
mixture model, and hence is able to regulate the asymmetric behaviors 
across components with greater flexibility [71]. A Bayesian approach 
implemented by MCMC scheme could also be applied to make 
inference for FM models with ST distribution in great efficiency [62]. 
Its application was found in various areas, including biology [66,75], 
bioinformatics [76], transportation [69] and astrophysics [77].

Other than these distributions above widely used in FM models, 
some alternative non-normal distributions have also received some 
attention, including normal inverse Gaussian distribution [78,79], 
skew t-normal distribution [80], Shifted Asymmetric Laplace (SAL) 
distribution [81], and generalized hyperbolic distributions [82]. 
Franczak [81] suggested that the SAL mixture models offered near-
perfect results on the data whereas the mixture models with normal 
distribution consistently overestimated the number of components. 

Models with non-normal mixture for longitudinal data
Similar to the FM model for independent data discussed above, 

when the repeated observations, yi in (2), are truly non-normally 
distributed, the model with normal assumption is not robust and 
can lead to poor estimation and inference [83]. In this case, non-
normal FM models for longitudinal data should be considered, 
because it fits the data better than normal mixture. Although most 
of non-normal distributions such as SN [84] and ST distributions 
[85] used on FM model for independent data could be applied on 
longitudinal cases, ST distribution was most widely implemented by 
adding a skew parameter and degrees of freedom parameter. Either 
the random effects or the residual of the model could be assumed 
an ST distribution. Recently, for example, Muthén [85] introduced a 
new growth mixture model with ST distributed random effects.
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In addition to FM models with linear (polynomial) or piecewise 
linear mean functions, the mixture models with different nonlinear 
mean components have obtained increasingly attention. For instance, 
to explicitly estimate the HIV viral load trajectories, Huang et al. 
[86] constructed three different mean functions for three potential 
subgroups with ST distribution, including one-compartment model 
with a constant decay rate, two compartment model with constant 
decay rates, and two compartment model with constant and time-
varying decay rates, respectively, and made inference for the ST-FM 
models from Bayesian prospective. Furthermore, in addition to non-
normality, Huang et al. extended FM models by considering other 
longitudinal data features simultaneously, including measurement 
errors in covariates [87-89], non-ignorable missing mechanism 
[87,89-91], left-censored response [92], and time-to-event outcomes 
[93]. 

Discussion
Recent decades, FM model has proved to be one of the most 

powerful model-based approaches dealing with data in the presence 
of population heterogeneity. This heterogeneity could be detected 
by visual methods, such as scatter plot and histogram. For instance, 
a bimodal or even multi-modal distribution for independent data 
and distinct trajectories for longitudinal data strongly suggest the 
existence of heterogeneity or subgroups. FM models could handle 
this data feature not only by providing model parameter estimates, 
but also allowing estimate of model-based probabilistic clustering 
to obtain class membership probabilities. Recent developments 
and extensions in FM models offer increasing ability and flexibility 
in capturing independent or longitudinal data with different data 
features, which can benefit applications in various scientific areas. 

The optimal number of mixture components selection is an 
important but difficult problem in FM models. Since the conventional 
likelihood-ratio test comparing k and k+1 components FM models 
is not appropriate, adjusted Lo-Mendell-Rubin Likelihood-Ratio 
Test (Adjusted LRT) obtained the agreement in selecting the model 
with optimal number of components [94]. An alternative approach 
to determine the optimal number of components is to compare the 
information criteria, such as Akaike’s Information Criteria (AIC) [95], 
Bayesian Information Criteria (BIC) [96], and Sample-Size Adjusted 
BIC (SSABIC) [97]. However, most of these criteria are very sensitive 
to sample size, and favor highly parameterized models. Thus, it is 
suggested that these information criteria should be considered with 
other evidence. Additionally, entropy has also been considered as a 
criterion for components number selection. Entropy assesses weather 
one subject was classified neatly into one and only one subgroup, with 
higher value (> 0.80) indicating better classification [98]. As this issue 
has not been completely resolved, it is good to apply different criteria 
simultaneously to determine the optimal number of components for 
FM models.

As a constrained exploratory technique, FM model seeks 
the patterns that data are trying to tell, but what can be learned is 
limited by what is entered. In other words, the final model is the 
best representation of the data, given the specifications of the model 
before the estimation algorithm. Whether they represent the true 
heterogeneous patterns is unknown. Thus, we suggest researchers to 
obtain further evidence that the unobserved subgroups really exist by 

replicating findings with another data, and identifying the association 
between subgroup membership and other measured variables.

Initial value selection and convergence issue often appear in model 
estimation via EM or ECM algorithm for computationally intensive 
FM models. With general form of skew distributions, sometimes it 
may not be able to get closed form for the conditional expectations 
involved in the E-step of the EM algorithm. Starting with different 
sets of initial values is strongly recommended, which helps determine 
whether these values all result in the same solution. Non-normal 
distributed mixtures need more random initial values than normal 
mixtures to replicate the best log-likelihood given a typically less 
smooth likelihood function. To avoid these problems happened in 
EM or ECM algorithms, Bayesian approach with MCMC technique, 
which has attracted the attention in this field, could be a rescue. 

Other cautions of FM models should also be addressed. First, the 
computational load of complicated FM models, especially mixtures 
with non-normal distributions for longitudinal data, is extremely 
heavy. Second, for inference of FM models, parameter (or model) 
identifiability can be a critical but difficult problem when a large 
number of model parameters must be estimated simultaneously. 
Each component model must be ensured to be identifiable, and then 
the whole mixture model could be identifiable. If the model is not 
properly identified, it is possible that many different sets of parameter 
estimates would appear. Moreover, models comparison and goodness 
fit tests need to be further developed, not only focusing on the 
difference in the number of latent classes, but also in their random-
effects specification. Finally, FM model is a statistical procedure 
which is usually based on large sample size.

In summary, FM model is a fast developing statistical approach for 
modeling independent or longitudinal data with heterogeneity. This 
article provides an up-to-date brief overview of the developments in 
FM models for both independent and longitudinal data. Compared to 
independent data, studies on FM model for complicated longitudinal 
data are still relatively limited, and few studies include time-varying 
predictors, but we believe that more and more important and 
interesting results in this area will be reported in the near future.

A final note that we would like to make is possible software to 
implement FM models. The most widely used software for FM 
models are EMMIX [99] and Mplus [100]. Other available software 
designed for certain specific situations include, but not limited 
to, AUTOCLASS [101], NORMIX [102], and MIX [103]. Several 
R packages are also available to implement FM mixture models, 
including ‘mclust’ [104], ‘mixtools’ [105], ‘FlexMix’ [106]. When 
the mean functions of components are very complicated, especially 
for longitudinal data with non-normal distributions, which bring 
extremely heavy computational load, the Bayesian method shows 
its advantages. The WinBUGS software [107] interacted with the 
package ‘R2WinBUGS’ in R is a good choice.
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