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Abstract

Survival Analysis Methods are commonly used to analyze clinical trial 
data. In most clinical studies, the time until the occurrence of an event is the 
main outcome of significance. Clinical trials are conducted to assess the worth 
of new treatment regimens. The major events that the trial subjects seek to 
determine are either death, development of an undesirable reaction, relapse 
from remission, or the progress of a new disease entity. In order to model time-
to-event data or clinical trials data, a parametric distribution can be assumed. 
We have in this study assumed that the data follow a log-logistic distribution. 
To estimate the parameters of this lifetime distribution, the Bayesian estimation 
approach is considered under the assumption of informative (gamma) priors 
as well as the frequentist estimation method. The Bayes estimators cannot 
be obtained in close forms; therefore, approximate Bayesian estimates are 
computed using the idea of Lindley. The clinical trial data considered in this 
study is either randomly or non-informatively censored. These types of data 
occur when each subject has a censoring time that is statistically independent 
of their failure times. A simulation study is carried out and also three different 
sets of real data have been analyzed in order to examine our methods. The 
Bayesian methods are considered under squared error and linear exponential 
loss functions.

Keywords: Bayesian Inference; Maximum likelihood; Squared Error and 
LINEX Loss Functions

Introduction
The log-logistic survival model is a lifetime distributional 

model which can be used as an alternative to the well-known and 
used Weibull distribution in lifetime or clinical trials data analysis. 
The shape parameter of the log-logistic distribution performs 
similar functions as that of the Weibull distribution. It is important 
that sometimes we model the survival or clinical trial data using a 
distribution that has a non-monotone hazard rate. According to [1], 
when the shape parameter is say p > 1, the hazard function becomes 
unimodal and when p ≤ 1, the hazard decreases monotonically. The 
fact that the cumulative distribution function can be written in closed 
form unlike the lognormal distribution makes it useful for analyzing 
survival data. The loglogistic model has the distribution, density and 
survival functions respectively as 
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where p is the shape parameter and θ the scale parameter. 

The log logistic distribution is a continuous probability 
distribution which has non-negative random variables, hence, it can 
be used in survival analysis as a parametric model for events whose 
rate increases initially and decreases consequently, For instance, 
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mortality of cancer patients following diagnoses or treatments. See 
for instance, [2-5].

According to [6], the log logistic distribution has been shown 
to be a suitable model in analyzing survival or clinical data was 
considered by Cox, Cox and Oakes, Bennet and others. [7], employed 
the log logistic distribution on lung cancer data and in their study, 
they estimated the mortality ratio at which it reached a maximum 
level. They determined the parameters of the log logistic model by 
making use of maximum likelihood estimate and bootstrap methods 
and observed the proximity of the results. A study conducted by [8], 
on the spread of HIV virus in San Francisco between 1978 and 1986 
indicated that, the log logistic model was most suitable among other 
models to use with half censored data.

Under random or non-informative censoring, sample of say 
n elements are followed for a specified time say, T, the number of 
elements that is experiencing the event is considered to be random, 
but the entire length of study is fixed. Since the time is fixed, there 
are certain practical advantages with regards to designing a follow-up 
study. In a straightforward overview of this scheme, which is known 
as fixed time censoring, each element has a maximum inspection time 
say Ti, for i = 1 ,…, n, which may possibly vary from one situation 
to another. S(t)represents the probability that a unit i will be alive 
at the end of the inspection time. Consider an experiment where 
we start with an observation of 50 cancer patients that have died or 
survived at the specified time. The survival of the patients may be due 
to withdrawal, inadequate monitoring mechanism or deaths which 
are not related to the purpose of the study.
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Maximum Likelihood Estimator (MLE) has been used frequently 
in determining the parameters of most of the lifetime distributions 
such as Weibull, lognormal, generalized exponential and others. 
Some of the works can be found in [11], they studied, generalized 
exponential distribution: Bayesian estimations. Other estimation 
procedures related to the above were considered by [12]. Determined 
the Bayes estimates of the reliability function and the hazard rate of 
the Weibull failure time distribution by employing squared error 
loss function [13]. Applied Bayesian to the parameter and reliability 
estimate of Weibull failure time distribution [14], studied the 
approximate Bayesian estimates for the Weibull reliability function 
and hazard rate from censored data by employing a new method 
that has the potential of reducing the number of terms in Lindley’s 
approximation procedure. Others include; [15-20].

The main objective of this study is to apply the Bayesian 
estimator’s procedure using Lindley’s approximation method with 
two loss functions for the unknown parameters of the log logistic 
distribution against the classical maximum likelihood estimator 
with different sample sizes and parameter values using simulation 
study. Since both parameters of the distribution are non-negative, we 
assume that both take on the gamma prior distributions which are 
not necessarily the conjugate priors for the parameters.

Maximum Likelihood Estimation
Consider a set of n independently and identically distributed 

random pairs of (ti,δi), where ti= min (Xi,Ti) and δi=I(Xi≤Ti) indicating 
whether the observation is censored or not for I = 1, 2,…, n. in an 
independent random censored model, it is assumed that the survival 
time Xi and the censoring time Ti are independent and from the same 
distribution. The score vectors are

where the score becomes a vector of the first partial derivatives of 
(θ, p). When using maximum likelihood to estimate unknown 
parameters that cannot be obtained in close form, one always requires 
that an iterative (eg, Newton-Raphson) procedure be implemented, 
such that, one can consider evaluating MLEs of 

α with a trial value 
say α0 using a first order Taylor series as 

 

0 0
( )( ) ( ) ( )hh h αα α α α
α

∂
≈ + −

∂
			   (1)

Setting the left hand side of equation (1) to zero and solving for 
 ,α we have
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where H(α0) is the Hessian matrix and h(α0) the score vector.

Considering the two parameters of the log logistic distribution, 
the Hessian matrix can be obtained as follows for the parameters 
estimates. The score vector of

                    					     (3)
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From above, the partial derivatives for both θ and p is

						       (5)
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 are easy to obtain. Equations (3), (4) and 
(5) can be substituted into equation (2), from which an iterative 
procedure could be implemented to obtain the parameter estimates 
under maximum likelihood.

Bayesian Inference of the Unknown 
Parameters

In this section, we consider Bayesian inference of the unknown 
parameters of the log logistic distribution. In order to employ the 
Bayesian methods, a prior needs to be defined. A prior is simply one’s 
knowledge or an expert’s opinion on the parameters being estimated. 
We have little prior information for all the parameters being 
estimated, and so we want our data information to dominate the prior 
distribution by assuming reasonably non-informative priors for all 
the parameters in this model. It is assumed that the two parameters 
follow a vague Gamma (a, b) and Gamma (c, d) prior distributions. 
These prior models are chosen because both the scale and shape 
parameters of the log logistic distribution are non-negative.

Π1(θ)αθ a-1 exp (-θb),θ > 0				   (6)

Π2(p)αp c-1 exp (-pd),θ > 0				   (7)

The Bayesian posterior distribution based on which inferences 
are drawn is 
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Squared-error Loss
The squared error loss is the loss incurred by adapting action say, 

a when the true value is say, a.

In other words, it implies the cost obtained by replacing the actual 
value of the parameter with the parameter estimate. Let the Bayesian 
estimator say, βse be the posterior mean. If u (θ, p) is considered as the 
function of interest, then:
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Note; the function of interest in our study is the loss function 
which measures the distribution parameters of θ and p. It is observed 
that equation (9) cannot be computed explicitly even if we take 
some specific priors on the parameters, as a result [21] proposed 
an approximation procedure to compute the ratio of two integrals 
similar to equation (9). The approximation procedure is adopted in 
this paper.

Lindley Approximation
The posterior Bayes estimator of an arbitrary function u(α) given 

by [21] is 
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Where l(α) is the log-likelihood and ω(α), v(α) are arbitrary 
functions of α. We assume that v(α) is the prior distribution for  
and ω(α)= u(α).v(α) with u(α) being some function of interest. The 
posterior expectation according to [12] is
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∫ +
=
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               	  (11)

Where ρ(α)=log{v(α)}.

An asymptotic expansion of Lindley’s approach of equation (11) 
according to [18] is

         

						      (12)

where l stands for the log-likelihood function.

Considering the Bayesian estimator via Lindley, the following 
are obtained with u1,u11 and u2,u22 representing the first and second 
derivatives of θ and p respectively under the squared error loss which 
is referred to as the posterior mean.

	

Let l20 and l30 represent the second and third derivatives of the log-
likelihood function with respect to the scale parameter θ, then

	

	

If we let l02 and l03 represent the second and third derivatives of 
the log-likelihood function with respect to the shape parameter p, we 
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Linear exponential loss function
This loss function measures the degree of overestimation and 

underestimation of the parameters being examined. Let k represent 
the shape parameter of the LINEX loss function. Refer to [13] for the 
posterior expectation of the LINEX loss function. The Bayes estimator 


BLu  of a function u=u[exp(-kθ),exp(-kp)] under LINEX is given as


1 2

1 2

( ) ( ) ( , ; , )
( ) ( ) ( , ; , )

i
BL

i

u p L t p d dp
u

p L t p d dp
π θ π δ θ θ
π θ π δ θ θ

∫ ∫
=

∫ ∫

                           

						      (13)

With Lindley’s approach, u1,u11 and u2,u22 are the first and second 
derivatives for θ and p respectively under the linear exponential loss 
function, hence

1( ) exp( ), exp( )uu k u k kθ θ θ
θ
∂

= − = = − −
∂

	 2
2

11 2 22 02 exp( ),  uu k k u uθ
θ =
∂

= = − =
∂

2( ) exp( ),  exp( )uu p kp u k kp
p
∂

= − = = − −
∂

2
2

22 1 112 exp( ),  0uu k kp u u
p
∂

= = − = =
∂

           

Real Data Analysis
Example 1

The data for this example are from survival of patients with 
cervical cancer recruited to a randomised clinical trial that was 
aimed at analysing the effect of an addition of a radio sensitizer to 
radiotherapy (New therapy- “treatment B”) compared to using 
radiotherapy alone (Control - “treatment A”). Treatment A and B 
were given to 16 and 14 patients respectively. The data are in days 
since the start of the study, the event of interest was death caused by 
this cancer. Our interest is on patients under treatment A to illustrate 
the proposed methods in this paper. The data is obtained from [22], 
and asterisked observations are censored.

Using the iterative procedure suggested in this paper and basing 
on comparison criterion on standard errors as well as their average 
confidence/credible lengths, we have for the MLEs of θ  and p  to 
be 770.5429 and 1.90488 with their corresponding standard errors as 
48.15893 and 0.11906 respectively. Since we do not have any prior 
information on the hyper-parameters, we assume a = b = c = d = 
0.0001. The Bayes estimators under squared error loss for θ and p
have respectively the following parameters estimates and standard 
errors, 770.5429, 1.90206 and 48.15893, 0.11888. 

Computing the Bayes estimates of θ  and p and that of their 
standard errors via the linear exponential loss function with a loss 
parameter of 0:7 we have, 859.7094, 1.78586 and 53.73182, 0.11162. 
With the loss parameter of 0:7, we have, 909.4092, 1.82677 and 
56.83807, 0.11417 respectively.

What has been observed here is, both the maximum likelihood 
and Bayes under squared error loss function have the same scale 
parameter estimates and standard errors which are smaller than that 
of Bayes under the linear exponential loss function. For the shape 
parameter, Bayes under LINEX loss function with the loss parameter 
of 0.7 has the smallest standard error. This implies that overestimation 
is more serious than underestimation.

Considering a 95% confidence interval under MLE, we have θ  = 
(679.1514,864.9344) and that of p  = (1.67153, 2.13823). The Bayesian 
credible intervals via the squared error loss function for θ  and p  are 
(679.1514, 864.9344) and (1.66906, 2.13506) respectively. The Bayes 
credible intervals with respect to the linear exponential loss function 
with a loss parameter of 0.7 for θ  and p  are (754.3950, 965.2380) and 
(1.56709, 2.00463) and that of the 0:7 are (798.0065, 1020.8120) and 
(1.60299, 2.05055) respectively.

Observing from above, LINEX loss function with a positive loss 
parameter had narrower credible intervals as compared to squared 
error loss function and maximum likelihood for the shape parameter. 
For the scale parameter, maximum likelihood’s confidence interval 
and Bayes credible interval with squared error loss were narrower 
than Bayes using LINEX.

Example 2
In this example, we analyse another data set which is considered 

moderate to obtain the parameter estimates and their standard errors 
in order to compare the methods employed in this paper. The data 
shown in Table 6, Example 2, are obtained from [22] and refer to 
remission times, in weeks, for a group of 30 patients with leukaemia 
who received similar treatment. Asterisks denote censoring times.

From Table 1, the Bayes estimator under squared error loss for 
the scale parameter of the log logistic model has the same estimate 
and standard error as compared to that of the classical maximum 
likelihood estimator but with the shape parameter (p), Bayes under 
LINEX loss function has a smaller standard error as compared to the 
others but underestimates it. With the confidence/credible intervals 
as shown in Table 1, Bayes using LINEX loss function with 0:7 as 
the loss parameter has the narrowest credible interval for the shape 
parameter whiles for the scale parameter both Bayes using squared 
error and maximum likelihood had the narrowest.

Example 3
The data in Table 6, which is considered large, are obtained from 

[22]. The data represent survival times for 121 breast cancer patients 
who were treated over the period 1929-1938. Times are in months 
and asterisks denote censoring times.

With this sample as depicted in Table 1, both maximum 
likelihood and Bayes under squared error had almost the same 
parameter estimates as well as standard errors for both the scale and 
shape parameters of the log logistic survival model. Both standard 
errors for the shape parameter are better than Bayes using the linear 
exponential loss function but for the scale parameter Bayes had the 
smallest standard error. Bayes had the narrowest credible intervals 
than maximum likelihood for the shape parameter via LINEX and 
that of Bayes under squared error loss function and maximum 
likelihood for the scale parameter.

Simulation Study
Due to the difficulties in comparing the performances of the 

methods theoretical, extensive simulations are performed and the 
proposed estimators compared via standard errors and absolute 
errors. A sample size of n = 25, 50 and 100, are considered and the 
steps below followed to generate the data.
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We generated the survival time X from the sample sizes shown 
above from the log logistic model. The values of the assumed actual 
shape parameter (p) of the log logistic distribution were taken to be, 
0.8, 1.8 and 2.8. The scale parameter (θ) was considered through out 
to be 1 without loss of generality.

The same sample size was generated from the Uniform 
distribution for the censored time T with (0; b), where the value 
of b depends solely on the proportion of the observations that are 
censored. In this study, the percentage of censoring was considered to 
be 20. t = min(X; T) is taken as the minimum of the failure time and 
that of the censored time.

To compute the Bayes estimates, an assumption was made such 
that _ and p take respectively Gamma (a, b) and Gamma (c, d) priors. 
The hyper-parameters were set to 0.0001, i.e. a = b = c = d = 0.0001, 
as suggested by [20].

For the purpose of illustration, the linear exponential loss 
parameter was taken to be k= ±0.7.The following were considered 
in choosing the parameter value. The sign of the loss parameter k 
represents the direction and its magnitude. If k = 0.7, the LINEX 
loss function will be asymmetric about zero with overestimation 
more costly than underestimation. If k < 0, the loss function rises 
exponentially but linearly with k > 0. Note also that if the parameter 
equal zero, the LINEX loss function turn to be approximately the 
squared error loss and therefore symmetric. See [23], for detailed 
discussions on the loss functions.

The objective of this study is to obtain the parameter estimates 
and to compare the methods proposed in this study. To examine the 
estimates of the parameters, the absolute errors and standard errors 
of the estimates are obtained and presented below.

When we consider Table 2, which contains the standard errors 
and the absolute errors of the estimated shape parameter ( ),p  it was 
noticed that LINEX loss function has the smallest standard errors 
and absolute errors as compared to the others. It is observed that, 
LINEX with a positive loss parameter overall performed better than 
the others which is an indication of overestimation. As the sample 
size increases, Bayes using squared error and maximum likelihood 
performed equally better. Though, Bayes estimator using LINEX loss 
function seems to have the smallest standard errors and minimum 
absolute errors, it must be stated that, all the estimators standard 
errors and minimum absolute errors are close.

From Table 3, Bayesian using the linear exponential loss function 
(LINEX) again had the smallest standard errors and minimal absolute 
errors for the scale parameter θ . In almost all the cases, the standard 
errors and the absolute errors of the two estimators, i.e., maximum 
likelihood and Bayes under squared error loss function turn to have 
the same values. This may be expected, in that, the priors used for 
the Bayesian analysis are non-informative. Again as the sample size 
increases, there is a corresponding decrease in standard errors for all 
the estimators with respect to the two parameters.

Extension
We have discussed Bayesian inference of the two-parameter 

log logistic distribution, but our method can be extended for many 
other cases also. We briefly describe an extension of our methods to 
Weibull distribution that was introduced by Waloddi Weibull in 1939 
and has the probability density function and survival function as

							     
						      (14)

n = 30 MLE BS BL
k = 0.7

BL
k = -0.7

θ 17.45724 17.45724 17.83051 20.37725

s.e ( )θ 0.58191 0.58191 0.59435 0.67924

CI ( )θ (16.3617, 18.5978) (16.3617, 18.5978) (16.6656, 18.9954) (19.0459,21.7086)

p 1.37594 1.37316 1.45007 1.27455

s.e 
( )p 0.04586 0.04577 0.04834 0.04248

CI ( )p (1.2861, 1.4658) (1.2835, 1.4629) (1.3553, 1.5448) (1.19123, 1.3578)

n=121

θ 60.49719 60.49719 59.57932 58.96793

s.e ( )θ 0.4500 0.4500 0.49239 0.44601

CI  ( )θ (59.5172, 61.4771) (59.5172, 61.4771) (58.6142, 60.5444) (58.01275, 59.92311)

p 1.60268 1.60256 1.77885 1.76418

s.e 
( )p 0.01325 0.01324 0.01470 0.01458

CI ( )p (1.57672, 1.62864) (1.57660, 1.62851) (1.75004, 1.80767) (1.73560, 1.79276)

Table 1: Standard Errors and Confidence/ Credible Intervals for    and pθ .

ML: Maximum Likelihood; BL: LINEX; BS: Squared Error; CI: Confidence/Credible Interval; s.e: Standard Error

1( ; , ) ( ) exp[ ( )]p pf x p p x xθ θ θ θ−= −
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( ; , ) exp[ ( )]pS x p xθ θ= − 			   (15)

Note that the likelihood function can be obtained from equation 
(1). Here p and θ are the shape and scale parameters of the Weibull 
distribution. The log-likelihood function of the Weibull distribution 
from which maximum likelihood and Bayes estimates are obtained is

1
[In( ) -   In( ) ( 1)In( )]

p
n i

i ii

x
l p p p xδ θ

θ=

   = + − −  
   

∑ 		
						      (16)

To compute the Bayes estimates of the unknown parameters, {θ, 
p}, it is assumed that p and θ have the same priors as described in 
equations (8) and (9) respectively. Based on the observed sample of 
{x1,...,xn}, the posterior density function with respect to p,θ and the 
data is

1 2*

1 2
0 0

( , ) ( ) ( )
( , )

( , ) ( ) ( )

L data p p
p x

L data p p d dp

θ π θ π
π θ α

θ π θ π θ
∞ ∞

∫ ∫
		

						      (17)

n
p =0.8 p = 1.8 p= 2.8

25 ML 0.77618 (0.03068, 0.13305) 1.61270 (0.03325, 0.28271) 2.76125 (0.03846, 0.42696)

BS 0.79193 (0.03063, 0.12370) 1.61091 (0.04001, 0.29231) 2.76123 (0.03846, 0.42703)

BL(k = 0.7) 0.78761 (0.03059, 0.12110) 1.53437 (0.03387, 0.27571) 2.45155 (0.03770, 0.40630)

BL (k = -0.7) 0.70829 (0.03057, 0.12067) 1.56760 (0.03351, 0.28183) 2.99242 (0.03784, 0.43115)

50 ML 0.61674 (0.03028, 0.10956) 1.37336 (0.03161, 0.23066) 2.16261 (0.03343, 0.33746)

BS 0.62393 (0.03027, 0.10600) 1.37174 (0.03063, 0.23174) 2.16256 (0.03343, 0.33748)

BL(k = 0.7) 0.62240 (0.03030, 0.10629) 1.68089 (0.03145, 0.22913) 2.26032 (0.03372, 0.32222)

BL (k = -0.7) 0.76862 (0.03030, 0.10526) 1.64116 (0.03136, 0.22765) 2.63234 (0.03341, 0.33057)

100 ML 0.69397 (0.03013, 0.09996) 1.47272 (0.03070, 0.21096) 2.75933 (0.03169, 0.28657)

BS 0.69512 (0.03013, 0.09865) 1.47244 (0.03070, 0.21118) 2.75933 (0.03169, 0.28657)

BL(k = 0.7) 0.69465 (0.03014, 0.09982) 1.46329 (0.03068, 0.20685) 2.39198 (0.03170, 0.28763)

BL (k = -0.7) 0.62615 (0.03013, 0.09964) 1.37476 (0.03072, 0.21498) 2.41555 (0.03171, 0.28681)

   ( , )se aep p p    ( , )se aep p p    ( , )se aep p p

Table 2: Average parameter estimates, standard errors and absolute errors for the shape parameter ( )p .

ML: Maximum Likelihood; BL: LINEX; BS: Squared Error; CI: Confidence/Credible Interval; s.e: Standard Error

n e 
p = 0.8 p = 1.8 p= 2.8

25 ML 2.66381 (0.40940, 0.11132) 1.78798 (0.04604, 0.50727) 0.92318 (0.00151, 0.24499)

  BS 2.66381 (0.40940, 0.11132) 1.78798 (0.04604, 0.50727) 0.92318 (0.00151, 0.24499)

  BL(k = 0.7) 2.66381 (0.35546, 0.11120) 1.54740 (0.04606, 0.48758) 0.96129 (0.00146, 0.23054)

  BL (k = -0.7) 2.74731 (0.39465, 0.11130) 2.07995 (0.04362, 0.50721) 1.07539 (0.00157, 0.24836)

50 ML 2.02794 (0.10703, 0.03951) 1.35288 (0.01514, 0.45403) 1.14866 (0.00072, 0.22216)

  BS 2.02794 (0.10703, 0.03951) 1.35288 (0.01514, 0.45403) 1.14866 (0.00072, 0.22216)

  BL(k = 0.7) 2.02779 (0.10098, 0.03761) 1.44093 (0.01276, 0.44474) 1.34871 (0.00072, 0.21737)

  BL (k = -0.7) 2.16347 (0.12558, 0.03981) 1.58097 (0.01346, 0.45824) 1.24848 (0.00072, 0.21009)

100 ML 2.58336 (0.04295, 0.01637) 1.61304 (0.00457, 0.41951) 1.15175 (0.00033, 0.20293)

  BS 2.58336 (0.04295, 0.01637) 1.61304 (0.00457, 0.41951) 1.15175 (0.00033, 0.20293)

  BL(k = 0.7) 2.58336 (0.04386, 0.01679) 1.39433 (0.00437, 0.42054) 1.19133 (0.00034, 0.19923)

  BL (k = -0.7) 2.58959 (0.03540, 0.01719) 1.69649 (0.00509, 0.42749) 1.13503 (0.00034, 0.20220)

   ( , )se aeθ θ θ    ( , )se aeθ θ θ    ( , )se aeθ θ θ

Table 3: Average parameter estimates, standard errors and absolute errors for the shape parameter ( )θ .

ML = Maximum Likelihood, BL = LINEX, BS= Squared Error, CI = Confidence/Credible Interval, s.e= Standard Error

Note that equations (17) and (8) are of the same form except that 
t is replaced in equation (17) by x. Therefore, the methods used to 
obtain the posterior estimates with respect to equation (8), can be 
applied here also. It implies that for the squared error loss and linear 
exponential loss functions, we can make use of equations (9) to obtain 
the parameter estimates.

For the purpose of illustrations, we have analysed the data in 
Example 2 and have also obtained mean squared errors for both 
the scale and shape parameters via simulation which enable us to 
compare the methods proposed in this paper under the Weibull 
distribution. Standard errors were obtained for each parameter of the 
Weibull distribution parameters for the purpose of comparison. The 
standard errors are presented in Table 4 for the real data, it is noticed 
that Bayesian estimation method is more robust and give better 
estimates with corresponding smaller errors for both parameters 
than the traditional maximum likelihood method under the LINEX 
loss function. It is also clear from Table 5, that the Bayesian method 
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has the smallest mean squared errors especially with the linear 
exponential loss function as compared to the MLE method. Note that 
the true parameters assumed for the Weibull model are 0.5 and 1.5 for 
the scale parameter and 0.8 and 1.2 for the shape parameter. We have 
also considered the LINEX loss parameter to be ± 1and ±2 without 
loss of generality.

Conclusion
In this paper, we have addressed the problem of Bayesian 

estimation for the loglogistic survival model, under linear 
exponential and squared error loss functions and that of maximum 

MLE BS BL
k = 0.7

BL
k = -0.7

θ 32.81261 32.85129 30.49252 32.06486

s.e θ 1.093754 1.095043 0.976417 1.068829

θ 1.085563 1.085555 0.972909 1.084810

s.e 
p 0.036185 0.036185 0.032454 0.036127

Table 4: Standard errors (se) for θ  and θ  with n =30 for the Weibull distribution.

n θ p MLθ  BSθ
 BLθ

k = 1

 BLθ
k = -1

 BLθ
k = 2

 BLθ
k = 2 

25 0.5 0.8 0.1619 0.164 0.1572 0.1414 0.1659 0.1608

    1.2 0.0534 0.0539 0.0573 0.0625 0.0576 0.058

  1.5 0.8 1.5896 1.6096 1.4967 1.4848 1.5067 1.4325

    1.2 0.5157 0.5208 0.5412 0.5359 0.5078 0.5262

50 0.5 0.8 0.1116 0.112 0.1127 0.1119 0.1115 0.1056

    1.2 0.0448 0.0449 0.0442 0.0435 0.0436 0.0437

  1.5 0.8 1.0158 1.0194 0.9678 0.9721 0.9342 0.9624

    1.2 0.3992 0.4003 0.3891 0.3861 0.3791 0.3879

100 0.5 0.8 0.0859 0.086 0.0844 0.0826 0.0826 0.0857

    1.2 0.0362 0.0363 0.0357 0.0358 0.0349 0.0355

  1.5 0.8 0.7818 0.7826 0.7608 0.7435 0.7524 0.7397

    1.2 0.3317 0.3319 0.3266 0.3109 0.3265 0.3171

                 

n θ p 

MLp 

BSp


BLp

k = 1



BLp

k = -1



BLp

k = 2



BLp

k = 2

25 0.5 0.8 0.0242 0.0242 0.0213 0.0226 0.0216 0.0226

    1.2 0.0527 0.0527 0.0489 0.0485 0.0484 0.0497

  1.5 0.8 0.0256 0.0256 0.0224 0.0216 0.0211 0.0206

    1.2 0.0489 0.0489 0.0489 0.0457 0.0501 0.0497

50 0.5 0.8 0.0095 0.0095 0.0095 0.0088 0.0093 0.0096

    1.2 0.0199 0.0199 0.0221 0.0199 0.0211 0.0191

  1.5 0.8 0.0095 0.0095 0.0088 0.0092 0.0093 0.0091

    1.2 0.0199 0.0199 0.0203 0.0202 0.0197 0.0208

100 0.5 0.8 0.0044 0.0044 0.0046 0.0041 0.0041 0.0038

    1.2 0.0097 0.0097 0.0094 0.0091 0.0092 0.0092

  1.5 0.8 0.004 0.004 0.0043 0.0043 0.0043 0.0041

    1.2 0.0093 0.0093 0.0094 0.0101 0.0093 0.0087

Table 5: Mean squared errors for the estimated scale ( )θ and shape θ parameters.

likelihood estimation. Bayes estimators are obtained using Lindley 
approximation whiles MLE are obtained using Newton-Raphson. 
A simulation study was conducted to examine and compare the 
performance of the estimates for different sample sizes with different 
values for the loss parameter. Three real dataset are also analysed.

From the above discussions in relation to both the real data 
analysis and the simulation study, we can conclude that all the 
estimators are presumably good for estimating the scale and shape 
parameters of the log logistic survival model, since the standard errors 
and the absolute errors of the estimates under the simulation study are 
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close. Maximum likelihood estimator and Bayes using squared error 
loss with respect to both the simulation and the real data analysis 
had the same estimate for the scale parameter of the distribution. 
With respect to the shape parameter, Bayes using squared error loss 
performed better than maximum likelihood but as the sample size 
increased regarding the simulation study and the real data application 
both had their standard errors converging to the same values. The 
LINEX loss function had the smallest standard error with the fairly 
small and moderate samples for the shape parameter but when the 
data became large, maximum likelihood and Bayes using the squared 
error loss also performed better.

Based on the results and discussions given above, we agree with 
[9], whose study suggests that maximum likelihood estimation is 
a suitable method in estimating the parameters when performing 
analyses using log logistic distribution on grouped data such as half 
censored data but for Weibull distribution the Bayesian approach 
outperform that of the MLE. The Bayesian approach adopted in this 
paper is a good alternative to MLE but is computational intensive 
as compared to maximum likelihood method which is simple to 
implement.
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