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Abstract

Studies with delayed outcomes generally receive little benefit from adaptive 
allocation procedures. In this manuscript we present an optimal design for 
outcome-adaptive allocation by combining information from delayed primary 
outcomes and more quickly observed auxiliary outcomes. Bayesian methods 
are used to construct the joint distribution of these outcomes, which is used to 
estimate the components of the optimal allocation ratio. Simulation studies show 
this approach to be effective at achieving adaption even before the delayed 
outcome is observed.

Keywords: Randomization; Adaptive clinical trials; Study design; Bayesian 
methods

Introduction
Optimal response-adaptive allocation designs are intended to 

minimize the overall number of treatment failures observed in a trial. 
In cases with sufficient evidence of some treatment outperforming 
another, the allocation algorithm will increase the probability that 
subjects are allocated to the superior treatment. These designs thus 
can exhibit fewer treatment failures, then balanced designs [1].

In practice, some primary outcomes – such as survival or 
relapse – require months or years before they are observed. With 
these outcomes, there can be a delay in updating the allocation rate 
for the next patient or group of patients. However, the efficiency of 
the response adaptive design highly depends on the immediacy of 
observed data: if few primary end points are observed in early stages 
of the trial, adaptation will not occur. Bai et al. [2] have shown that 
moderately delayed responses will not affect asymptotic properties 
of the adaptive procedure under certain delay mechanisms, though 
there could be a higher risk of assigning more patients to some 
inferior treatment. If the rate at which outcomes are observed is 
too slow relative to the rate of patient accrual, then the benefits of 
adaptive allocation may not be realized.

In this paper, we introduce an adaptive allocation design that 
incorporates an auxiliary outcome that is positively correlated with 
the primary outcome yet is more quickly observed. Rather than use a 
second outcome as a surrogate or replacement of the primary outcome 
in the allocation algorithm, our procedure aggregates information 
from both the auxiliary and primary outcomes, based on the classical 
response adaptive design framework for binary data. The goals of this 
paper are to: 1) introduce a response adaptive design framework that 
simultaneously uses both primary and auxiliary outcomes, and 2) 
incorporate a bivariate beta distribution [3] as the prior distribution 
of correlated binomial data to account for dependence between the 
two outcomes. Relevant background is provided in the next Section, 
after which the methodological set-up and allocation algorithm are 
introduced. A simulation study comparing the joint approach with 
both balanced and optimal allocation is then presented, and the 
manuscript concludes with a brief discussion.
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Materials and Methods
Background

The goal of classical response-adaptive procedures is to minimize 
the loss function given that the information level at each stage is 
constant [4]. This loss function contains the difference, in treatment 
success rates (θ=PA-PB, where PA and PB are the success rates for 
treatment A and B) and sample size (ni=nA,i+nB,i):

L(θ)=u(θ)nA,i+υ(θ)nB,i      				    (1)

where nA,i and nB,i are the cumulative number of patients assigned to 
groups A and B at the ith stage of the study, u(θ) is the loss for a patient 
allocated to treatment A, and υ(θ) is the loss for a patient allocated to 
treatment B. We also assume 2 2

( , ) ( , )A A i B B in n Kσ σ+ =  , where 2
Aσ  and 

2
Bσ  are the outcome variance in groups A and B, respectively, and K 

is some constant.

Patients are generally exposed to two risks in randomized trials: 
treatment failure and assignment to an inferior treatment. Let θ<0 
indicate treatment A is inferior (pA<pB) and θ>0 indicate treatment 
B is inferior (pA>pB). The treatment failure risks are described by u(θ) 
and υ(θ). The function u(θ) increases as θ decreases and υ(θ) increases 
as θ increases. The allocation ratio (nA,i/nB,i) determines the probability 
of assigning patients to the inferior treatment. The loss function, 
then integrates these two risks, and our goal is to minimize this loss 
function subject to the constant variability at each stage of the trial. 
Minimization of the equation (1) can be solved for the allocation ratio 
using the delta method (Appendix A.1), and the minimized allocation 
ratio is:

,

,

( ) .
( )

A i A

B i B

n vR
n u

σ θ
σ θ

= = 				    (2)

Consequently, we need only model u(θ) and υ(θ) to realize some 
specific objective. For binary response trials, if u(θ)=υ(θ)=1, the 
allocation ratio, A A

A B
B B

p qR / p qσ σ= = , which is the so-called Neyman 
allocation rule [5], which minimizes estimator variance. If u(θ)=1-pA 
and υ(θ))=1-pB, the allocation ratio A

B

pR p= turns out to be the so-
called optimal allocation ratio, which minimizes the expected number 
of treatment failures [1]. Loss functions u(θ) and υ(θ) can be treated 
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as functions of unknown parameter pA and pB, which can be estimated 
based on patient responses using a sequential estimation method. If 
our primary response is delayed, we may not have information to 
estimate u(θ), υ(θ) and R appropriately.

Allocation ratio derivation with two outcomes
For treatments j=A or B, suppose Xj is an auxiliary outcome 

for treatment j and Yj is a primary outcome, where Xj and Yj both 
are binary variables. According to the observed outcome sequence, 
we denote PX,j as the “success” rate for the auxiliary outcome in 
treatment j, and PY,j as the success rate for the primary outcome. 
We assume that 1) PX,j and PY,j are random variables with some joint 
distribution, 2) the conditional random variables Xj|PX,j∼BIN(nX,j, 
PX,j) and Yj|PY,j∼BIN(nY,j,PY,j) are independent, where nX,i and nY,i are 
the number of observed auxiliary and primary outcomes, and 3) the 
association between Xj and YJ is explained through the association 
between PX,j and PY,j. Thus, the posterior distribution of PX and PY (we 
remove the subscripts for simplicity) can be expressed as: 

( )( , | , ) ( | ) ( | ) ,    X Y X Y X Yf P P X Y f X P f Y P f P P∝           (3)

As mentioned earlier, u(θ) and υ(θ) are positive functions that 
measure the risk of assigning patients to treatment A and B given 
primary efficacies (PY,A,PY,B). In addition, we also have auxiliary 
efficacies PX,A and PX,B, which offer some information about PY,A and 
PY,B, respectively, since they are associated. Therefore, it is reasonable 
to average u(θ) and υ(θ) over all possible sets of PY,A and PY,B given 
(PX,X,Y)A and (PX,X,Y)B. Based on the loss function (1) of the classical 
adaptive design framework, the loss function of the procedure using 
auxiliary and primary outcomes takes the following form:

L(θ)=E[u(θ)|(PX,X,Y)A, (PX,X,Y)B]nA,i +E[υ(θ)|(PX,X,Y)A, (PX,X,Y)

B]nB,I             						      (4)

where nA,I and nB,i are the number of patients in treatment A and B 
at ith stage of the trial. The two conditional expectations in (4) can 
be calculated through the conditional posterior distribution from (3). 
The minimization of the function (4) is the same as that of the loss 
function (1) in classical response-adaptive design framework, since 
the conditional expectations are assumed to be known. Therefore, the 
allocation ratio is 

( )*
, ,/ |( , , ) , ( , , ) / [ ( ) | ( , , ) , ( , , )Y A Y B X A X B X A X BR E v P X Y P X Y E u P X Y P X Yσ σ θ θ=   

Two-dimensional beta-binomial model
Martin and Vaeth [6] proposed a two-dimensional beta binomial 

distribution that can model the association between two count 
variables. We use a similar approach to model the association between 
the auxiliary and primary outcomes, which is done through modeling 
the dependence between their respective success rates. Olkin and 
Liu [3] derived a bivariate beta distribution from three marginal 
gamma distributions. We use this distribution as a prior for (PX,j,PY,j). 
Given the assumptions about the design, the joint distribution of 
(Xj,Y,j,PX,j,PY,j) is the product of the conditional distributions of Xj|PX,j 
and Y,j|PY,j and prior distribution of (PX,j,PY,j).

To simplify our notation, the following distributions are 
generalized to any (X,Y,PX,PY) given a specific treatment.

f(X,Y,PX,PY)=f(X,Y|PX,PY)*f(PX,PY|(α1,α2,β)    		  (5)

               
(1 ) * (1 ) yx n yx yn xx y

X X Y Y

n n
P P P P

x y
−−   

− −   
   

	 *
1 2 2 2

1 2

1 1 1 1
1 2

1 2

( ) (1 ) (1 )
( ) ( ) ( )(1 )

X X Y Y

X Y

P P P P
P P

α α β α α β

α α β

α α β
α α β

− + − − + −

+ +

Γ + + − −
Γ Γ Γ −

Integrating with respect to PY, the joint distribution of (X,Y,PX) is:
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Where 2F1 is the Gaussian hyper geometric function. Therefore, 
the conditional distribution of PY given PX and the data (X,Y) is 
obtained through division:

	 f(PY| X,Y,PX)=f(X,Y,PX,PY)/f(X,Y,PX)     		   (7)
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As presented in the defined loss function, u(θ) and υ(θ) are 
functions of PY,A and PY,B. Also, we know that treatment A is 
independent from treatment B, which indicates the distributions 
for treatment A (f(X,Y,PX,PY)A) and for treatment B (f(X,Y,PX,PY)A) 
are independent. As long as we know the conditional distribution 
(f(PY|X,Y,PX)A) and (f(PY|X,Y,PX)B) for treatment A and B, we are able 
to calculate the conditional expectation from the loss function (4). 

As we are interested only in optimal allocation, we focus solely 
on the case when u(θ)=1-PY,A and υ(θ) =1-PY,B, recalling that PY,j is the 
primary efficiency rate in the jth treatment. Then the loss function (4) 
is reduced to

L(θ)=(1-E[PY,A|( PX,X,Y)A])nA,i+(1-E[PY,B|( PX,X,Y)B])nB,i
*	      (8)

The optimal allocation ratio can then be rewritten as
2

,*
2

,
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−
. 

For a given treatment, the conditional expectation is a function of 
X,Y,PX with prior parameters (α1,α2,β) (Appendix A.2).
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1 2 2 1 1 2 2 1 2
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The expression on the right side of equation (9) is the Gauss continued 
function. The continued function of the Gauss hyper geometric 
function converges uniformly for 0<PX<1. Therefore, E[PY|X,Y,PX] is 
guaranteed to reside within the range (0,1). The correlation of X and 
Y is then proportional to the correlation of PX and PY and takes the 
following form (Appendix A.3):

( ) ( )
( )( )1 2

, , .x y
X Y

x y

n n
Corr X Y Corr P P

n nα β α β
=

− − − −
		

						      (10)

Prior density selection
In the beta-binomial model, subject matter expertise can be used 
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to provide some information to assess the probability of having a 
successful outcome, which then determines the mean or mode of the 
beta distribution. The sum (r) of α and β determines the variance of the 
beta distribution given some desired marginal mean. As r increases, 
the more compact and informative will be the prior distribution. The 
sum r indicates how confident we are on the expert advice or literature 
information, and r-2 is known as the effective sample size. If we lack 
confidence in the prior belief of success probability, we can weigh the 
data more by selecting a wide unimodal beta density function (i.e. by 
selecting low r). 

For the bivariate beta distribution, we adopt the same logic in 
selecting the marginal densities, which follow beta distributions. 
It can be shown that the prior correlation of the Olkin and Liu [3] 
distribution is narrowly bounded when the marginal means are given, 
which may diminish the ability of the bivariate prior distribution to 
adequately model the association between success rates. According 
to Equation (10), the correlations of auxiliary and primary outcomes 
is approximately equal to the correlation of auxiliary and primary 
efficacy as ( ) 1 2, ( , , )x yn n α α β

. Therefore, we intend to have a less 
informative prior by choosing r no greater than 15 when α1, α2 and β 
are greater than 1. As studied in Olkin and Liu [3], the bivariate beta 
distribution tends to have a bivariate normal density when α1,α2 and  
are large. 

Estimation rule for allocation rate
Although the allocation rate depends on unknown parameters, 

we will apply the sequential sampling rule following the trend of 
optimal adaptive design to update the allocation rate. The prior 
parameters (α1,α2,β) reveal the knowledge about the correlation 
between the auxiliary and primary outcomes (X and Y) and efficacies 
of the outcomes (PX and PY) for a specific treatment. Based on 
clinician experience or pilot studies, we can determine an appropriate 
combination of (α1,α2,β) that satisfies 1 1/ ( ) ( )XE Pα α β+ ≈ and 

2 2/ ( ) ( )YE Pα α β+ ≈ . Let (xk,yk) be the paired auxiliary and primary 
binary outcomes for the kth subject, and let Tk be that subject’s 
treatment indicator. Let Iyk indicate whether the primary response for 
the kth patient has become accessible when a new patient is enrolled in 
the study. Let F(○)i-1=F((x1,y1,Iy1,T1)…(xi-1,yi-1,Iyi-1,Ti-1)) be the history 
of the first i – 1 patients. Based on F(○)i-1, then we have the results 
listed in Table 1.

Allocation algorithm
The first two steps in the algorithm for conducting the proposed 

adaptive design are (1) to set the initial allocation rate to 0.5 for the 
first patient, and (2) to update the auxiliary efficacy for treatment 
A and B with posterior means 1, , 1 1, , 1, ( ) / ( )A A i A A A ix Ap x nα α β− −= + + + and 

1, , 1 1, , 1, ( ) / ( )B B i B B B ix Bp x nα α β− −= + + + for the ith stage. These posterior means 
are weighted averages of the sample proportion and prior mean, and 
approximate the sample proportion as the sample size increases. 
Notice that the posterior distribution of the auxiliary outcome is 
given by the beta-binomial distribution.

The next step is (3) to calculate R* using,  

( ) ( ) 2 2
, ,, ,, ,1 1

( | , ), ( | ,, ), Y A Y BY A Y Bx A x Bi i
E P p F E P p F σ σ

− −
  



 

with respect to obtaining estimates of 2
,Y Aσ  and 2

,Y Bσ , both posterior 
means and sample estimates have disadvantages. Posterior variance 
estimates are functions of the posterior means and are computationally 
intensive, while sample variances might not be estimable in small 
sample sizes due to response delays, no events being observed, or 
patients clustering in one sample. As a compromise, the posterior 
conditional variance ( ), , 1

| ,Y j x j i
V P p F

−

 
  



  is used for i ≤ k, and the 
empirical sample variance 2

, 1 , 1 , 1 , 1( ( )) /j i j i j i j iy n y n− − − −−  is used for i > k, 
where k is the minimum number of accrued patients after which the 
sample variance is available for both treatment groups. Steps (2) and 
(3) are then repeated, and randomization is terminated depending on 
some specified stopping criterion (final sample size achieved, early 
termination threshold exceeded, etc.).

Results and Discussion
Simulation study sampling methodology

In this simulation study, we are interested in modeling different 
clinical scenarios to see the performance of our bivariate allocation 
method compared with both optimal and balanced allocation. 
Specifically, we examine: 1) how different primary outcomes between 
treatment A and B affect simulation results, in terms of allocation 
proportions, the number of patients assigned to each treatment, error 
rate, number of treatment failures, and 2) how different auxiliary 
efficacies affect the simulation results.

In many situations, simulations are conducted separately for each 
method with a large number of repetitions, where each simulated 
data set represents a single trial. However, this approach could lead to 
scenarios where one or more of the approaches are exposed to more 
instances of rarely occurring samples than are other approaches. 
Thus, it may be more realistic to generate NA random observations 
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Table 1: Data calculations after ith patient are accrued.
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from the treatment A population and NB random observations from 
treatment B population for each trial, where each method would then 
sample from the same pool of subjects. Suppose N is the total sample 
size of the clinical trial, then NA and NB should both be greater than N. 
Within a trial, three allocation methods will actually share the same 
sample pool to simulate from populations of treatment A and B, and 
the sample pool is regenerated after each trial. In this manner, we are 
able to reduce variation between the samples used by each method. 

The sample size for balanced allocation is fixed in advance, while 
the sample size of the adaptive methods is allowed to adjust during 
the trial. The total sample size for each combination of parameters 
(discussed below) is selected to yield 90% power for a two-sided Z-test 
assuming balanced allocation; in cases with no true difference, sample 
sizes of 100 subjects per group were created. Correlated binomial 
responses are, sampled from a multinomial distribution given both 
auxiliary and primary efficacies with a specified correlation [7]; note 
that this correlation does not vary freely in the range (-1,1) due to 
restrictions of the joint probability distribution of auxiliary and 
primary outcomes. We assume the correlation between auxiliary and 
primary outcomes is fixed regardless of treatment effect. 

Simulation settings
Optimal allocation utilizes the primary outcome to update the 

allocation ratio, which is calculated based on the sample proportions. 
As mentioned earlier, these sample estimates may not be estimable 
in early stages of the trial, when no variability exists in treatment 
responses or no primary responses are available. A lead-in is 
introduced to the simulation process for optimal allocation during 
which patients are assigned to treatments with equal probability.

Prior distributions take into account the uncertainty of PX and 
PY before observed data is considered. Recalling that auxiliary and 
primary efficacies (PX and PY) follow beta distributions, α1 and β are 
the shape and scale parameters for the auxiliary efficacy (PX), and 
α2 and β are the shape parameters for the primary efficacy (PY). We 
assume that the mean of each prior distribution is equal to some value 

(pX, pY), which gives us 1 1/ ( ) ( )xE pα α β+ ≈  and 2

2

( )yE pα
α β

≈
+ . Given these 

two equations, the relationship among (α1, α2, β) can be determined, 
and with a known correlation between the PX and PY, the exact 
combination of (α1, α2, β) can be found.

Our goal is to model scenarios where the primary outcome has a 
rare event rate and the auxiliary outcome has a moderate event rate. 
We thus select primary efficacies between PY∈[0.1,0.3], and auxiliary 
efficacies between PX∈[0.4,0.7]. Due to restrictions of the correlation 
in the bivariate beta distribution (see Discussion), we assume the 
correlation between auxiliary and primary outcomes is 0.5 in all cases. 
In order to incorporate delayed observations of the primary outcome, 
we assume the primary outcome for each subject is not observed until 
30 additional subjects have accrued into the trial. Alternatively, we 
assume that the auxiliary outcome is immediately observed.

Simulation results
In what follows, we refer to our proposed method as the bivariate 

approach and the traditional optimal allocation method as the 
univariate approach. Table 2 presents the number of patients assigned 
to treatment B (the more effective treatment) for a given sample size. 
We first note that in cases of differences in treatment success rates, 
the bivariate approach accounting for auxiliary information assigns 
more subjects to the more effective treatment than does the univariate 
approach. With an effect size of 0.1 between the primary success rates 
(n = 526), the bivariate optimal method assigned approximately 50 
more patients to treatment B than does balanced allocation, while the 
univariate optimal approach assigned approximately 42 more, which 
are 19% and 16% improvement over balanced allocation, respectively. 
When the effect size increases to 0.2 (n = 162), the bivariate approach, 
allocated on average 23 more patients to treatment B than balanced 
allocation (a 28% increase), while the univariate approach assigned 
only 14 more (a 17% increase). We also see that the two adaptive 
approaches perform similarly to balanced allocation when there is 
no difference in primary success rates, with the bivariate optimal 
approach performing similarly even when the auxiliary outcomes 
have different success rates between treatments.

Sample
Size

Primary Auxiliary Method

TRT A TRT B TRT A TRT B Bivariate Univariate Balance

526 0.1 0.2

0.4 0.7 313.4 304.8 263.5

0.4 0.6 312.2 304.4 262.8

0.5 0.7 312.1 305.0 263.0

0.5 0.6 313.6 305.4 263.2

0.6 0.6 313.0 305.0 263.1

162 0.1 0.3

0.4 0.7 104.0 95.4 80.9

0.4 0.6 104.0 96.0 81.1

0.5 0.7 104.0 95.5 81.1

0.5 0.6 104.8 95.2 80.8

0.6 0.6 104.9 95.4 81.6

200 0.3 0.3

0.4 0.6 99.7 99.9 100.3

0.6 0.5 100.8 100.1 99.8

0.5 0.5 100.0 100.3 99.8

0.7 0.5 97.1 99.9 100.0

Table 2: Summary Number of patients in group B (receiving more effective 
treatment).

Sample
Size

Primary Auxiliary Method

TRT A TRT B TRT A TRT B Bivariate Univariate Balance

526 0.1 0.2

0.4 0.7 442.4 (8.6) 443.2 (8.5) 447.3 (7.9)

0.4 0.6 442.1 (8.6) 443.0 (8.5) 447.1 (8.2)

0.5 0.7 441.8 (8.5) 442.5 (8.4) 447.5 (8.1)

0.5 0.6 441.8 (8.9) 442.5 (8.8) 447.3 (8.1)

0.6 0.6 441.2 (8.6) 443.1 (8.7) 447.4 (8.3)

162 0.1 0.3

0.4 0.7 125.0 (5.6) 126.7 (5.6) 129.9 (5.0)

0.4 0.6 124.6 (5.5) 126.4 (5.6) 129.5 (5.1)

0.5 0.7 125.1 (5.4) 126.8 (5.4) 129.5 (5.0)

0.5 0.6 124.8 (5.4) 126.7 (5.3) 129.5 (5.2)

0.6 0.6 124.8 (5.5) 126.6 (5.4) 129.7 (5.2)

200 0.3 0.3

0.4 0.6 140.0 (6.8) 140.1 (6.8) 140.2 (6.8)

0.6 0.5 140.0 (6.4) 140.0 (6.4) 140.0 (6.4)

0.5 0.5 139.8 (6.4) 139.9 (6.3) 139.9 (6.3)

0.7 0.5 139.9 (6.5) 139.9 (6.5) 139.9 (6.4)

Table 3: Summary of Expected Number of Patient Failures (Standard Deviation).
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In Table 3 we see the average number of treatment failures 
for each of the three allocation strategies. Both optimal allocation 
methods produced slightly fewer failures than balanced allocation, 
though the improvements were small due to the low success rates for 
the primary outcomes. In addition, the bivariate approach averaged 
nearly 1 fewer failure than the univariate approach when the effect 
size was 0.1 and nearly 2 fewer failures when the effect size was 
0.2. While modest (especially compared to the reported standard 
deviations), this improvement shows that incorporating the more 
quickly realized auxiliary information in the manner described for 
the bivariate method can lead to real gains compared to the standard 
univariate approach. Table 4 shows the estimated empirical power 
and type-one error rates for each approach. Though the two optimal 
allocation approaches lead to imbalanced treatment groups, such 

Sample
Size

Primary Auxiliary Method

TRT A TRT B TRT A TRT B Bivariate Univariate Balance

526 0.1 0.2

0.4 0.7 0.92 0.91 0.91

0.4 0.6 0.90 0.92 0.89

0.5 0.7 0.90 0.89 0.92

0.5 0.6 0.91 0.91 0.90

0.6 0.6 0.90 0.90 0.88

162 0.1 0.3

0.4 0.7 0.91 0.91 0.91

0.4 0.6 0.91 0.92 0.91

0.5 0.7 0.90 0.90 0.91

0.5 0.6 0.92 0.92 0.91

200 0.3 0.3

0.6 0.6 0.91 0.91 0.91

0.4 0.6 0.06 0.06 0.06

0.6 0.5 0.05 0.05 0.05

0.5 0.5 0.05 0.05 0.04

0.7 0.5 0.04 0.04 0.05

Table 4: Summary of power/error rate.

Sample
Size

Primary Auxiliary Method

TRT A TRT B TRT A TRT B Bivariate Univariate

526 0.1 0.2

0.4 0.7 0.41 (0.36, 0.45) 0.41 (0.37, 0.45)

0.4 0.6 0.41 (0.36, 0.46) 0.41 (0.36, 0.46)

0.5 0.7 0.41 (0.36, 0.46) 0.41 (0.37, 0.46)

0.5 0.6 0.41 (0.37, 0.45) 0.41 (0.37, 0.45)

0.6 0.6 0.41 (0.36, 0.45) 0.41 (0.37, 0.45)

162 0.1 0.3

0.4 0.7 0.34 (0.32, 0.37) 0.50 (0.50, 0.50)

0.4 0.6 0.33 (0.32, 0.36) 0.50 (0.50, 0.50)

0.5 0.7 0.33 (0.32, 0.37) 0.50 (0.50, 0.50)

0.5 0.6 0.33 (0.31, 0.36) 0.50 (0.50, 0.50)

0.6 0.6 0.33 (0.31, 0.35) 0.50 (0.50, 0.50)

200 0.3 0.3

0.4 0.6 0.50 (0.46, 0.54) 0.50 (0.45, 0.55)

0.6 0.5 0.50 (0.46, 0.54) 0.50 (0.45, 0.55)

0.5 0.5 0.50 (0.47, 0.53) 0.50 (0.45, 0.55)

0.7 0.5 0.51 (0.46, 0.55) 0.50 (0.45, 0.55)

Table 5: Summary of Allocation Rate (IQR) at the 25th percentile visit for 
treatment A.

imbalances did not affect either power or the level of the resulting 
hypothesis tests. 

Tables 5, 6 and 7 provide estimates of the allocation rates as well 
as a measure of their variability (Inter quartile Range, IQR) after 25%, 
50% and 75% of patients have been accrued. In the low effect size (n = 
526) and no difference (n = 200) cases after 25% of the trial has been 
concluded Table 4, we see that the bivariate and univariate methods 
have similar average allocation ratios and IQRs. Interestingly, in the 
large effect size case with a smaller total sample size (n = 162), we see 
that the univariate approach has not yet begun adapting, since few 
primary outcomes have been observed at this point. These results show 
that while the bivariate and univariate allocation approaches behave 
similarly after enough observations are in hand, the ability of the 

Sample
Size

Primary Auxiliary Method

TRT A TRT B TRT A TRT B Bivariate Univariate

526 0.1 0.2

0.4 0.7 0.41 (0.38, 0.44) 0.41 (0.38, 0.44)

0.4 0.6 0.41 (0.38, 0.44) 0.41 (0.38, 0.44)

0.5 0.7 0.41 (0.36, 0.44) 0.41 (0.38, 0.44)

0.5 0.6 0.41 (0.36, 0.44) 0.41 (0.38, 0.44)

0.6 0.6 0.41 (0.36, 0.44) 0.41 (0.38, 0.44)

162 0.1 0.3

0.4 0.7 0.35 (0.32, 0.41) 0.38 (0.32, 0.44)

0.4 0.6 0.35 (0.32, 0.41) 0.37 (0.32, 0.43)

0.5 0.7 0.36 (0.32, 0.41) 0.38 (0.32, 0.43)

0.5 0.6 0.36 (0.32, 0.41) 0.38 (0.32, 0.44)

0.6 0.6 0.36 (0.32, 0.41) 0.38 (0.32, 0.43)

200 0.3 0.3

0.4 0.6 0.50 (0.47, 0.53) 0.50 (0.47, 0.53)

0.6 0.5 0.50 (0.47, 0.53) 0.50 (0.47, 0.53)

0.5 0.5 0.50 (0.47, 0.53) 0.50 (0.47, 0.53)

0.7 0.5 0.51 (0.47, 0.53) 0.50 (0.47, 0.53)

Table 6: Summary of Allocation Rate (IQR) at the 50th percentile visit for 
treatment A.

Sample
Size

Primary Auxiliary Method

TRT A TRT B TRT A TRT B Bivariate Univariate

526 0.1 0.2

0.4 0.7 0.41 (0.39, 0.43) 0.41 (0.39, 0.43)

0.4 0.6 0.41 (0.39, 0.43) 0.41 (0.39, 0.43)

0.5 0.7 0.41 (0.39, 0.43) 0.41 (0.39, 0.43)

0.5 0.6 0.42 (0.39, 0.44) 0.42 (0.39, 0.44)

0.6 0.6 0.41 (0.39, 0.44) 0.41 (0.39, 0.44)

162 0.1 0.3

0.4 0.7 0.36 (0.32, 0.40) 0.36 (0.31, 0.40)

0.4 0.6 0.36 (0.32, 0.40) 0.36 (0.31, 0.40)

0.5 0.7 0.36 (0.32, 0.40) 0.36 (0.32, 0.40)

0.5 0.6 0.36 (0.31, 0.40) 0.36 (0.32, 0.40)

0.6 0.6 0.36 (0.31, 0.40) 0.36 (0.32, 0.41)

200 0.3 0.3

0.4 0.6 0.50 (0.48, 0.52) 0.50 (0.48, 0.53)

0.6 0.5 0.50 (0.48, 0.52) 0.50 (0.47, 0.52)

0.5 0.5 0.50 (0.48, 0.52) 0.50 (0.48, 0.52)

0.7 0.5 0.50 (0.48, 0.52) 0.50 (0.48, 0.53)

Table 7: Summary of Allocation Rate (IQR) at the 75th percentile visit for 
treatment A.
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bivariate approach to begin the adaptation sooner is the determining 
factor in any gains it exhibits over the univariate approach. We see 
that the allocation ratios and their variability’s did not change much 
after 50% (Table 6) and 75% (Table 7) of the patients are accrued. 
At this point both the bivariate and univariate procedures allocate 
patients between treatments in almost identical manners, regardless 
of effect size. 

Conclusion
In this manuscript we introduced an optimal allocation strategy 

for reducing binary treatment failures when the primary outcome 
is delayed in measurement. Our approach compliments the 
lagged primary outcome with a quickly observed auxiliary binary 
outcome, assuming that both outcomes are positively correlated. 
The information from both outcomes is combined using a Bayesian 
approach, where we use a bivariate beta prior to model the dependence 
between the success rates of the primary and auxiliary outcomes. We 
have shown the dependence between the rates to be proportional to 
the dependence between primary and auxiliary observations. This 
Bayesian approach also allows researchers to incorporate information 
from other sources, including results from previous studies, pilot 
data, or even hypotheses based on clinical expertise.

One limitation of the presented work is that we only considered 
trials with two groups. While optimal allocation designs exist for 
three-group trials [8], the allocation rations are more complex, and 
have not been expressed in closed form for any case greater than three 
groups [8,9]. Our focus was also solely upon binary outcomes. We 
have assumed that the auxiliary and primary outcomes are known to 
be positively correlated a priori. Hence we did not study scenarios 
where the correlation between the two outcomes was positive, 
but weak (we assumed a correlation of 0.5), where there was no 
correlation, or where the correlation was negative. 

Natural extensions of this approach would be to account for more 
than two groups, and also to account for continuous outcomes, or 
even cases where primary and auxiliary outcomes are of different 
modeling types (e.g., continuous and discrete). The loss-function 
approach used in Sections 2 and 3 could be used again to find the 
bivariate optimal allocation ratio for cases of three or more treatment 
arms, as Jeon and Hu [8] derived the univariate optimal allocation 
ratio for minimizing treatment failures in trials with three arms and 
binary outcomes. A similar approach could be used to jointly model 
continuous primary and auxiliary outcomes, though incorporating 
the association between such outcomes with a bivariate normal 
distribution will be more straightforward than the current approach. 

Jointly modeling heterogeneous modeling types can follow the general 
outline provided here, though selecting a bivariate prior distribution 
may become more challenging. 

The choice of modeling the association between primary and 
auxiliary outcomes through modeling the association between 
primary and auxiliary success rates with prior information was 
done for simplicity. We selected the bivariate beta distribution for 
this prior [3], though other distributions can certainly be used. An 
alternative approach would be to jointly model the outcomes in a 
way that directly incorporates their dependence, which would then 
allow separate prior elicitation for the marginal parameters of each 
outcome. In cases where we are interested in either different prior 
specification or in jointly modeling the outcomes, copula functions 
offer flexible alternatives. 
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