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Abstract

Recently, Big Data science has been a hot topic in the scientific, industrial 
and the business worlds. The healthcare and biomedical sciences have 
rapidly become data-intensive as investigators are generating and using 
large, complex, high dimensional and diverse domain specific datasets. This 
paper provides a general survey of recent progress and advances in Big Data 
science, healthcare, and biomedical research. Big Data science impacts, 
important features, infrastructures, and basic and advanced analytical tools are 
presented in detail. Additionally, various challenges, debates, and opportunities 
inside this quickly emerging scientific field are explored. The human genome 
and omics research, one of the most promising medical and health areas as 
an example and application of Big Data science, is discussed to demonstrate 
how the adaptive advanced computational analytical tools could be utilized for 
transforming millions of data points into predictions and diagnostics for precision 
medicine and personalized healthcare with better patient outcomes.

Keywords: Big data science; Big data infrastructure; Advanced analytics; 
Human genomics and OMICS; Precision medicine; Healthcare

Introduction
The big data impact and potentials in healthcare and 
medical sciences

Big Data is more than a decade old term that became very popular 
recently in life sciences and other fields. The healthcare industry 
has always been a large generator of biomedical data, with the U.S. 
healthcare system expected to reach the zettabyte (10²¹) scale from 
electronic health records, scientific instruments, clinical decision 
support systems, or even research articles in medical journals [1-
3]. Biomedical enterprises including the fields of human genomics 
(e.g., NIH 1000 Genome project), medical imaging (e.g., BRAIN 
initiative), the growth of mHealth, telehealth, and telemedicine, have 
generated trillions of data points resulting from the recent advances 
in biotechnology and advent of new computing sources (such as 
cloud) [4-14]. Big Data and its practices in health or medical science 
become even more prominent due to new social arenas/media and 
networks (such as Facebook and Twitter), sensory/digital technology, 
and mobile devices with smartphone apps and personal sensor health 
data with real time digital data accumulations [15,16].

The National Institutes of Health announced the Big Data to 
Knowledge (BD2K) Initiative with its long-term goals in 2014. As 
an important exemplar, NIH recently announced the “Precision 
Medicine Initiative”, which intends to assemble a longitudinal 
“cohort” of 1 million Americans, and characterize extensively with 
cell populations, proteins, metabolites, RNA, DNA and whole genome 
sequencing along with behavioral data; all linked to electronic health 
records, and eventually develop genetically guided therapy in the 
personalized and precision medicine for better preventive solution, 
early detections and treatment of common complex diseases [14,17-
21]. In the healthcare public health domains, AHRQ and Patient 
Centered Outcome Research (PCORI) have launched the PCORnet 
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initiative to support an effective, sustainable national research 
infrastructure that advances data collection from very large study 
populations, shares and uses of electronic health data in Comparative 
Effectiveness Research (CER) and other evidence based practice/
medicine research [22-25]. 

For the educational standard, Big Data are gradually driving 
higher education from data poor to data rich domain, from hypothesis 
driven to data driven, and the movements of the online or web based 
educations as “Wind Tunnels” promote more students getting 
involved in learning Big Data science worldwide. For example, at 
the University of London, UK, the Big Data Society forum, related 
journal, and the Big Data school certificate that trains next generation 
Big Data science researchers have been established [26-29]. Big Data 
science has been gradually recognized as an emerging field and 
discipline and could be one of the most valuable assets not only in the 
life sciences such as medical and healthcare, but also other domains 
including educational standards, government prospective, social 
sciences, financial industry and business opportunities [4-6,30-34]. 
The lessons learned from all those related domains and fields could 
be potentially applied to the healthcare and medical fields, e.g., from 
business field for the lowered cost, improved quality outcomes (fewer 
medical errors and readmissions), increased efficiency, productivity, 
effectiveness, and performance of healthcare providers and associated 
systems.

Big data science features and infrastructure 
Big Data science refers to the massive amounts of multiple 

digital data sets that are captured, collected, integrated, and 
analyzed. The important features of Big Data include: 1) size/
scale in terms of Volume, Velocity, Variety (known as three V’s): 
mass of measures increased from petabytes to exabytes, zettabytes, 
yottabytes; 2) evolving, varied, distributed, timeliness, dynamic, 
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not static, change with real time; 3) complexity and heterogeneity 
(structured, unstructured, semi-structured data); 4) data sharing 
and privacy [7,35-39] Due to these unique properties, in order to 
maximize Big Data potentials for knowledge discovery, and make it 
actionable and operational for better life science solutions, Big Data 
science infrastructure, the intelligent fundamental analytical tools, 
and advanced computational approaches that could conceptualize, 
theorize, and model the Big Data with the grounded theory method 
need to be established, understood and available by both Data analysts 
and domain researchers [40,41]. Therefore, a top layer question for 
Big Data scientists is what the important framework for good Big Data 
governance and implementation is in order to make it actionable and 
operational. There are four critical hierarchical domains/levels for the 
infrastructure of the Big Data governance [42].

First, in the software, hardware, and physical capacity domains, 
Big Data requires parallel-distributed architectures with a high 
performance multicore and clustering or cloud computing platforms 
that can access hundreds or even thousands of processors. The 
Hadoop system is an example, and is a distributed computing 
environment using a Map-Reduce framework. Hadoop tools and 
related software including HDFS distributed file systems allow for 
the storage, backup and computing resources for complex workloads 
[43-49]. Software-defined data center or software-defined network 
is open flow application programming to interfaces or a virtual 
network overlay for controlling, understanding and dealing with Big 
Data, which could also create agility and automation with a centrally 
programmable network [50,51]. Big data Script is an example of 
scripting language for complex big data processing pipeline, which 
improve the hardware abstraction and execution from wide ranges 
of computer architecture from laptop, to multicore servers, to cloud 
computing [52]. 

A few other examples of popular computing software include i) 
the open source R statistical language and related packages such as 
bioconductor has been well utilized in the past decades for analyzing 
Big genomic data [53]; ii) open source pbdR software is a series 
of R packages and an environment for statistical computing and 
programming with Big Data in R (http://r-pbd.org) [54,55]. Note that 
the difference between pbdR and R codes is that R system focuses on 
single multi-core machines for data analysis via an interactive mode 
such as GUI interface; while pbdR focuses on distributed memory 
system, where data are distributed across several processors and 
analyzed in a batch mode, and communications between processors 
are utilized in large High-Performance Computing (HPC) systems; 
iii) Revolution Analytics is a free and premium software and services 
that brings high-performance, productive, and ease-of-use to R and 
enables data scientists to derive greater meaning from large sets of 
critical data in record time; iv) Tableau Software, Tableau Desktop 
and Tableau Server uses visual analytics, ease-of-use approach and 
flexibility connecting to live data and perform visual, rapid-fire 
analysis. 

Second, in the databases level/domain, to manage large 
volume unstructured (e.g., text contents in an electronic Health 
Record (HER) systems) real time data which cannot be handled by 
standard database management systems like DBMS or RDBMS, an 
innovative database structure need be placed in order to streamline 
and eliminate redundancy, inaccuracy, and enable to have a single 

version of the truth of data. One of the fundamental issue in working 
with very large healthcare data, e.g. in the terabyte or petabyte range, 
small inefficiencies in storing data can have a large effect on ability 
to retrieve and process these data for other analysis. Third, in the 
knowledge/data process and logical capacity domain, the traditional 
operational focus needs to be shifted to a more analytic focus that 
could manipulate and convert various types of unstructured data and 
metadata into information context and actionable knowledge [56,57].

Last, but not least, in the resources domain and from the culture 
perspective, an integrative level has to be reached and shifted 
from personal/individual level with organizational and systematic 
approach where data is viewed as an asset with analytical culture and 
high predictive value [59,60]. Note that above four level hierarchical 
infrastructures of Big Data science determines it as a connection 
and systematic science merging and integrating cutting edge diverse 
multidisciplinary fields for better informed and shared decision-
making (Table 1 for more examples, cases, software and relevant 
references).

Big data science debates, challenges, and opportunities
Big Data science is now considered as “interdisciplinary fields 

work principally in the social sciences, humanities and computing and 
their intersections with the natural sciences about the implications 
of Big Data for societies” [26]. Due to its real time nature, and rich 
information enabled by new technologies, Big Data science has 
potential to offer a higher form of intelligence and knowledge with 
the aura of truth, objectivity, and accuracy [61,62]. Currently, there 
is a good understanding that addressing researcher’s subjectivity with 
Big Data sciences could make research more scientific, robust, and 
ethical. However, how real time features shaping the researchers’ 
usage of Big Data during gathering, manipulating, analyzing, and 
visualization process could be a challenging issue, and need to be 
examined.

External factors or data types, e.g., in the social media contents for 
the health related issues, the streaming unstructured user-generated 
text based qualitative data derived from subjective perceptions and 
personal experience may interfere and paint data with a misleading 
picture, and, in the end, what it quantifies does not necessarily have 
a closer claim on objective truth. Therefore, developing conceptual 
models grounded in the complex and unstructured data in the 
qualitative research perspective for detecting the subjectivity, the 
external factors, and abnormality of Big Data that may affect outcomes 
is really in need, and might be new research opportunities [35].

Moreover, since Big Data is not a random sample, but contains all 
data, ‘The Age of Big Data’ explosion raises some debates and challenges 
regarding the need of new scientific computational methods, and 
the values of the traditional statistical inference theories that has 
prevailed for centuries in data sciences, but now might be outdated 
[63-66]. We all know that the Big Data era requires exhaustive, to 
the plenary, unlike the random sampling based traditional statistical 
approaches. Should the best analytical approach in this new big data 
era be exhaustive using of full data with more intelligent (be specific, 
artificial intelligence or machine learning based) rather than random 
sampling the big data?

To answer why plenary exhaustive might be more valuable, we may 

http://r-pbd.org
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take a look at an evidence-based practice/medicine example. Based 
on the BMJ online forum, seventy five percent of doctors believe that 
adverse consequences has led the evidence-based practice/medicine 
moving toward collapse, and one real challenge is not evidence-based 
medical system itself, but that it is being improperly used due to the 
fact that most patients do not meet the clinical study inclusion criteria 
and most real cases are being considered as outliers. It is known that 
statistical significance does not imply the clinical significance, and 
correlation doesn’t conclude causal relationship. 

Note that a common ending for either Big Data or traditional 
sampling based inference in medical science is that 1) as the sample/
data size grows larger, the science gets stronger; 2) follow-up time 
(real) the longer, the results are closer to clinical, and the greater value 
for clinical significance and usefulness. 

Therefore, as an important inevitable complementary, Big 
Data science may overcome some challenges in evidence-based 
medical system (practice or medicine), and should be emphasized 
from research and clinical perspective with better data sharing and 
security plan, transparency, and integrity. This is because not only 
Big Data science allows researchers to study treatment effectiveness, 
and patient heterogeneity, but also the need for treatments to be 
allocated by randomization with continuously arriving new sample. 
In addition, through the integration of large data from published 
literatures and meta-analysis, secondary literature conclusions 
reached as a use of scientific methods to guide clinical practice itself 
could have important clinical significance and scientific value.

On the other hand, traditional statistical inference perspective, 
an important merit that Big Data science brings in is that it allows 
continuous refinement of the computational or statistical model and 
the associated assumptions with continuous arrival of new data for 
more accurate outcome and better informed decision making due 

to its real time, evolving and dynamic feature. More importantly, 
it allows applying predictive analytics to understand not only what 
has happened and what is currently happening, but also to predict 
what will happen in the future. The key challenges researchers face 
today in the area of Big Data is still the ability of researchers to locate, 
analyze, integrate, and interact with all real time data and associated 
software due to the lack of adaptive intelligent tools, accessibility, and 
appropriate training at the current stages [67,68]. 

In order to overcome such challenge for interpretable outcomes 
and replicable or reproducible results, and arriving to actionable 
and accurate medical decision making, close multidisciplinary 
collaborations of Big Data analysts with domain experts are needed. 
First, traditional data analysts (e.g., statisticians and mathematicians) 
should join with the new evolving class of “data scientists” (e.g., 
computer scientist/engineers) and create intelligent automatic 
systems and high level adaptive analysis tools to make full use of the 
Big Data and let the data speak for itself. Second, the domain experts 
including biomedical, social/behavioral scientists and scientists 
in economics, business, and geosciences, etc. need to work closely 
with Big Data scientists to make sense of the big data in order to 
extract actionable knowledge. The next generation of good Big Data 
scientists are indeed in demand of persons with brains for math, skills 
with computers, eyes of artists and abilities to: i) write algorithms that 
filter data; ii) churn through billions or trillions of data points and 
show where patterns emerge and what matters; iii) understand what 
they are telling; iv) graphically represent the information; v) make 
the judgment more sound, and more objective that may lead to better 
decision-making [69]. 

Hospitals throughout the United States currently undergo major 
operational change in order to complete Electron Health Record 
implementations and demonstration of their Meaningful Use in order 

Hierarchical Domains Software Features/Tasks/Outcomes Examples Some 
References

Platforms,Hardware, 
Physical Capacity Hadoop system

Parallel distributed, multicore, cloud 
and clustering for timeliness, privacy, 

transparency, data sharing, and integrity

Map-Reduce framework: Open flow application 
programming to interfaces or a virtual network 

overlay for controlling, understanding and dealing 
with Big Data, which could also create agility and 

automation with a centrally programmable network

[43-49]

Data Storage HDFS distributed file 
systems

Storage, backup, retrieval, acquisition, 
formatting to remove redundancy, 

inaccuracy
Big data Database: ORDBMS, OODBMS [50-53]

Fundamental Data 
Analysis Preprocessing

R/pbdR; bioconductor, 
SAS JMP, SPSS, Matlab

Data cleaning, extracting, integration, 
aggregation, visualizations

Software-defined data center or software-defined 
network, SoFIA, ExScalibur

[ 25,35,72-
74,80-83]

Advanced Computational 
Approaches

R/pbdR; Revolution 
Analytics, Tableau 

Software, SAS JMP, 
Matlab

Modeling, analysis, computing, 
interpretations

Network and systematic based approaches, 
Meta-analysis, Bayesian hierarchical model, data 
mining, statistical pattern recognitions, machine 
learning, artificial intelligence, and new scientific 

computational method

[13,75-79,84-
87]

Resources, Applications Bioconductor/R; BRB-
ArrayTools

Three Vs; Heterogeneity, distributed, 
dynamic;

Lowered cost, reduced medical error, 
actionable knowledge, high predictive 

value

1. Comparative Effectiveness and Patient 
Centered Outcome Research (large p, large 

n): hospital, lab, biometric data such as finger 
prints, handwriting, retinal scans, X-ray and other 

medical images, pulse-oximetry readings, and 
other unstructured, semi structured, health device, 

media or censored and EHR data
2. Precision Medicine, The Cancer Genome 
Atlas,(large p, large n): OMICS data (next 

generation sequencing, genomes, transcriptomes, 
epigenomes from cells, tissues and organisms)

3. Human genomics: clinical trial or animal study 
(large p, small n)

[1-5,24,88,89]
[4-6,11,14,18-

20]
[52,75-82,84-

87]

Table 1: Table 1: Big Data Domains, Features, Software/Hardware, Analytical Approaches, and Examples/Applications.
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to qualify for Centers for Medicare & Medicaid Services Incentive 
Programs and to avoid penalties [58]. Hospital administrators 
typically do not have additional resources to perform their own Big 
Data Analysis and is not part of their scope of work [59]. Also, due to 
the variety of the EHRs which are being used at the different hospitals 
and the current lack of Health Information Exchange among vendors 
and EHR products, Big Data Analysis of hospital multisite EHR and 
other data are rare and difficult to perform. Even single site Big Data 
Analysis is often done by researchers or employees who would like to 
answer specific questions, as opposed to being done by the vendors or 
by the hospital administrators [59]. 

However, if and when Health Information Exchange finally 
happens, the doors will suddenly open to Big Data Analysis that is 
expected to have huge positive implications to knowledge generation 
that shall impact research and practice. Some of the current problems 
are that in the past and in the present, hospital data was guarded due 
to HIPAA, conflict of interest, and its potential negative financial 
implications to the owner institutions. Vendors also have motivation 
to not develop EHR and other software systems that are interoperable 
with other software systems developed by other vendors, since that 
would make it easier for hospitals to change vendor in the future, 
which would have negative financial impact on the vendor [60].

Big data analytic approaches
Ultimately, the value of Big Data is not about the Big Data, it’s 

about how to turn big data into good research problems/questions/
hypotheses, then transform into valuable solutions that benefit society 
[70,71]. This is rendered simpler by their applications, for instance, 
the rapid advance of EHRs, mHealth, eHealth, Smart and Connected 
Health, and telehealth devices merging with social, behavior science, 
genomics and economics have led to the development of new 
infrastructure and transformation of health care systems for precision 
medicine and better-individualized patient care.

One important question for Big Data scientists to ask: 1) 
How to transform some 300 billion data points into quantitative 
statistical evidence for diagnostics, therapeutics, and new insights 
into population health, disease and treatment? 2) What are the best 
approaches? Does the traditionally used inference technique continue 
to play some roles? For instance, should it be experimental versus 
computational; hypothesis driven versus data driven; traditional 
statistical modeling versus data mining and artificial intelligence 
approaches. 

To make the overwhelming volume of Big Data actionable and 
analytics operational, several key issues of how we proceed and 
analyze the data requires special attentions. First, bottleneck of the Big 
Data: Analysis tools and the development of advanced statistical and 
computational techniques with pipelines that can easily scale up with 
the three V’s (Volume, Velocity, Variety) and its complexity. These 
tools make high-powered methods available to not only professional 
statisticians, but also to casual users. Second, creator of Big Data value 
is the integration and linkage of heterogeneous Big Data, which has 
formidable logistical and analytical challenges. Third, validation, 
interpretation, and visualization: are crucial to extracting actionable 
knowledge for decision making which require Big Data analysts to 
closely collaborate with domain experts. 

Therefore, in order to transform the billions of data points into 
valuable and actionable solutions require deeper learning and data 
analysis at both fundamental and advanced levels [25,72-74]. The 
fundamental level analysis include 1) basic online real time queries, 
pipeline, flow, analysis tools; 2) data pre-processing or big data 
reduction: detecting the missing data, errors, outliers; extracting, 
transforming, loading part of data preprocessing, automated filtering 
of non-useful data, redundancy and correlations; 3) computational 
techniques for summarizing the qualitative and quantitative results, 
unveiling trends and patterns, and generating reports; 4) data 
automations and generations for metadata, e.g., computer-automated 
analysis of blog postings; 5) visualization tools with simple and easy 
models: interpreting and making sense of the data.

At the advanced level data analysis: systems based and network 
approaches for data integration in genomic research is a good example. 
The followings are lists but not limited potential sophisticated 
computational and statistical approaches 1) Real time analytics and 
Meta-analysis that integrates multiple data sources including bedside 
healthcare streaming data; 2) hierarchical or multi-level model for 
spatial (state and national) data; longitudinal and mixed model for 
real time or temporal dynamic data rather than static data; 3) data 
mining, pattern recognitions for trends, and pattern detection; 4) 
natural language processing for text data mining; machine learning, 
statistical learning, Bayesian learning with auto-extraction of data 
and variables; 5) artificial intelligence with deep learning (e.g., neural 
network, support vector machine, dynamic state space model), 
automatic ensemble techniques and intelligent agent for automated 
analysis and information retrieval; 6) causal inferences and Bayesian 
approach with probabilistic interpretations [13].

Comparing fundamental level analytic with advanced level 
analytic in Big Data science, fundamental analytic including 
descriptive analytics serves for the purpose to summarize “what has 
happened” (e.g., in a simplest type that allows you to break down big 
data into smaller, more useful pieces of information) and focus on the 
insight gained from historical data to provide trending information on 
past or current events (e.g., looks at data and information to describe 
the current situation in a way that trends, patterns, and exceptions 
become apparent). While the advanced level computational tools 
listed above in Big Data science focuses on predictive and prescriptive  
analytics, which intends to determine patterns and predict future 
outcomes and trends, and answers “what could happen” and “what 
should we do?” through quantifying effects of future decisions in 
order to advise on possible outcomes. Prescriptive Analytics includes 
functions as a decision support tool by exploring a set of possible 
actions and suggesting actions based on descriptive and predictive 
analyses of complex data. It also conducts real-time analytics by using 
point-of-care data and analyzes the data at the point of care to present 
immediate and actionable information to providers.

Human genomics/OMICS application and example
Patient centered Electronic Health Records (EHR) big data 

examples have been reviewed and discussed recently, mainly for the 
case of large sample size n in terms of three V’s, but not for large 
number of parameters p [2-6]. Therefore, here we focus on a human 
OMICS (large “p”: next generation high-throughput sequencing 
data, genomes, transcriptomes, epigenomes and other omics data 
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from cells, tissues and organisms) in personalized and precision 
medicine research as an important application and great example 
of Big Data science in the medical fields. Figure 1 demonstrates this 
translational research scheme/process from Big data generating 
instrument/technology, to complex data preprocessing and analytical 
pipeline, procedures and approaches in order to transform 300 billion 
data points of disease data into diagnostics, therapeutics, and new 
insights into population health and disease treatment. We can see 
that both lower level fundamental analysis and high level advanced 
computational analytic tools could play significant roles and be a 
more cost effective way than experimental ways in the big data world. 

Prior to performing advanced analytic techniques, to guarantee 
the quality of the Big data, various preprocessing at fundamental data 
analysis that combines, pools, aggregates and transforms various 
raw data into appropriate data format need be done. For instance, 

in the genomic domain, for Affymetrix time course data obtained 
from Affymetrix GeneChips, one may use Affymetrix software (MAS 
5.0) and probe set algorithms of MAS5 for background subtraction, 
signal intensity normalization between arrays, and non-specific 
hybridization correction etc [75-79]. To do so, high level performance 
hardware and software (e.g., programming languages and algorithms 
for visualizations) that conduct parallel and distributed and cloud 
computing to manage, retrieve, reformat and analyze the data from 
various resources including the genomic laboratory and hospital 
patient information systems needs be considered (Table 1) [58,59,80-
84]. For instance, Bianchi et al. [81] developed HTS-flow, a workflow 
management system that can retrieve information from a laboratory 
management system database, manages Omics data analyses through 
a simple GUI, outputs data in standard locations and allows the 
complete traceability of datasets, accompanying metadata and 
analysis scripts. Childs et al. [82] designed and implemented SoFIA, 

 
 
Figure 1: Big Data science in the fields of biomedical research: Transforming big genome data into diagnostics, therapeutics, and new insights into population 
health, disease treatment. 
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an Omics data integration framework for annotating high throughput 
data sets [82]. Kovatch et al. also shared their experiences designing 
an optimized whole genome DNA and RNA pipeline system for the 
“Genome Analysis ToolKit (GATK) Best Practices” and provided an 
evaluation of computing workload and I/O characteristics [83].

Besides the above discussed fundamental analysis,from thousands 
of genes to identify a handful of genes responded to the drug over time 
that could be potential drug targets could turn into a computational 
problem related to the “curse of dimensionality” issue (large “p”) in 
the temporal fashion. Various statistical/machine learning and data 
mining techniques or statistical testing approaches could be applied 
and compared for addressing such to examine the reproducibility 
issues including: 1) Data driven (mining) versus hypothesis driven 
(testing); 2) unsupervised learning (clustering) versus supervised 
(classifications); 3) optimization versus sequential or recursive feature 
reduction with multiple testing: i) linear versus nonlinear model; ii) 
parametric, nonparametric, semi-parametric statistical model with 
L-norm regularization techniques; iii) univariate versus multivariate 
methods; iv) Bayesian with prior knowledge/distribution versus non-
Bayesian/classical statistical approaches; v) Hierarchical Bayesian 
with shrinkage in statistical modeling versus Automatic Relevance 
Determination in neural network.

Here we briefly present a simplified example of “large p” through 
comparisons of various statistical methods for multiple sclerosis 
disease studies in human genomics [84]. The genome data set 

contained gene expression data from 14 MS patients given a 30g dose 
of intra-muscular IFN1a and the gene expression data available for 
10 time points: before treatment, 1h (hour), 2h, 4h, 8h, 24h, 48h, 5d, 
7d & 3months. After data preprocessing and filtering from millions 
gene, 4324 genes measured at 10 time points on 14 patients with a 
total of 605,360 measures or data points were included for further 
data analysis. The key biological questions of this study are 1) the 
identifications of significant differentially expressed genes responding 
to the treatment, and 2) characterizing the dynamics and changes of 
gene expression to determine the trajectories of significantly regulated 
genes in responding to the treatment. 

For comparison purposes, we presented the following six 
computational methods for the “curse of dimensionality” issue in the 
temporal fashion in order to identify a handful of genes responded 
to the drug over time from thousands of measures: 1) parametric 
methods with the Analysis of Variance (ANOVA) with bootstrapping 
resampling techniques; 2) semi-parametric with class dispersion 
method; 3) nonparametric with Pareto with permutation methods; 4) 
mixed effects model (non-Bayesian) with bootstrap; 5) Bayesian linear 
correlated/multivariate model; 6) Bayesian nonlinear model. Figure 2 
provides the condensed results of each method to demonstrate their 
differences, note that all are adequate in capturing and identifying the 
significant/relevant genes responding to the treatment and disease 
progression.

For the parametric method: mixed models proved to be more 

Figure 2: Comparison of gene selection/filtering methods in time course gene expression data: Identifications of significant differentially expressed genes in 
response to the treatment from various methods (top); post clustering and path analysis for characterizing the dynamics and changes of gene expression from early 
stage to intermediate to the late stage to determine the trajectories of significantly regulated genes to better understand the treatment effect (bottom).
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conservative. For the semi-parametric with class dispersion and 
nonparametric with Pareto methods are appropriate in capturing 
variation from time to time, thereby making them more suitable 
for investigating significant monotonic changes and trajectories 
of dynamic changes. Simulation studies showed that the semi-
parametric with class dispersion performs best regarding robustness 
of rejection of hypothesis given different significance (alpha) levels, 
while parametric ANOVA and nonparametric Pareto perform 
similar. For nonlinear Bayesian versus linear Bayesian multivariate 
model is more conservative but more robust, and perform better with 
regard to different type I error rates while linear model showed better 
goodness of fit than nonlinear model.

Moreover, post clustering and path analysis is able to not only 
identify the genes that are over expressed, under-or not expressed, 
but to isolate trajectories of genes whose regulations appear to 
be interdependent, inferring the possible inter-gene-dependence 
pathway and network showing early, intermediate, and late gene 
clusters to better understand the treatment effect. In short, the 
combinations of these various approaches would provide us more 
comprehensive picture of the solutions and reliable results that 
illustrates the values and roles of the advanced computational tools 
transforming thousands of Big Data points into quantitative statistical 
evidence for diagnostics, therapeutics, and new insights into disease, 
population health, and treatment [75-79,85-87]. Health/nursing and 
medical researchers could employ these advanced analytical tools 
in Big genome research for either disease specific (e.g., neurology 
conditions, cancer, cardiovascular diseases) or domain specific such 
as pain, fatigue, physical functioning or multiple chronic health 
conditions.

Conclusion
Big Data has the potential to impact various fields from social 

science to political science, from financial industry to business, from 
medical science to public health, from health care to genetics, and 
from personalized medicine to patient/custom-centered outcomes. It 
has involved various levels of human life: individuals to community, 
and industrial to university to government. The emerging field of 
Big Data science and associated practices offered new opportunities 
and is promising, but it comes with many challenges in all fields, 
especially the biomedical and health science fields which makes 
improved understanding of human life, health, diseases, and behavior 
possible. The collaborative network, nurturing environments 
and interdisciplinary, team-science approach with highly trained 
computational skills and domain/disease expert talents are crucial, 
while adaptive and intelligent evolving analytic tools and smart 
utilization of open resources are keys for enhancing the true value 
of real time big data for actionable healthcare decision making and 
better informed patient outcomes.
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