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Abstract

Sphingosine 1-Phosphate (S1P) is a mitogenic lipid molecule formed by 
the enzymes, Sphingosine Kinase (SphK) 1 and 2. SphK1, which is commonly 
over expressed in malignant tumours, is recognized as a significant contributor 
to cancer cell survival and tumour angiogenesis, and is accordingly implicated 
in the pathogenesis of various types of cancer. Initial studies focused on non-
haemopoietic malignancies; however a growing body of literature on the role 
of sphingolipid metabolism in haemopoietic malignancies is now emerging. In 
particular, Sphk1 is implicated in the resistance of Tyrosin Kinase Inihibitors 
(TKIs) in Chronic Myelogenous Leukemia (CML) Here, we discuss the roles of 
the SphKs in CML and the compounds currently available in order to develop 
new combinatorial therapeutic approaches.
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cytoplasmic and nuclear signalling cascades, which are shared with 
cytokines known to regulate the proliferation, differentiation and 
survival of haemopoietic cells.

BCR-ABL inhibitors
Before 2000s, CML has been treated with hydroxyl urea and 

interferon therapy that pro vide temporary disease control but do 
not alter progression to advanced disease with a median survival 
ranging 45-55 months from diagnosis [9]. Therefore, the most 
effective treatment strategy was Allogeneic Stem Cell Transplanta-
tion (ASCT). The recognition of the BCR-ABL oncogene and the 
corresponding protein led to the synthesis of small-molecule drugs, 
designed to interfere with BCR-ABL tyrosine kinase acti vation [10]. 
The small molecule Tyrosin Kinase Inihibitors (TKIs) are the central 
line of treatment against CML. Over the past decade the development 
of TKIs that directly target the constitutive tyrosine kinase activity of 
BCR-ABL has resulted in significantly improved survival rates and 
disease management in CP CML patients. Nevertheless, it has to be 
noted that allogeneic transplantation remains the most effective long-
term therapy for CML, particularly in the more aggressive stages of 
the disease. The first TKI to be discovered was imatinib which could 
specifically discriminate CML cells from their normal counterparts 
by directly targeting BCR-ABL [10]. Imatinib treatment of CML 
in CP is associated with an overall survival rate of 89% over a five-
year clinical evaluation and a progression-free survival rate of 93%, 
which was much higher than earlier treatment strategies involving 
interferon-alpha (IFN-α) [11]. However, resistance to imatinib can 
arise as a result of mutations in the kinase domain that either make 
direct interactions with imatinib or are important in formation of the 
inactive BCR-ABL conformation that is required for drug interaction 
[12]. Therefore, two second generation TKIs were designed to 
overcome the observed imatinib resistance, which included nilotinib 
[13], a derivative of imatinib with ~30-fold higher strength, and 
dasatinib [14], with 300-fold higher potency than imatinib. In 

Introduction
The molecular hallmark of CML is the Philadelphia 

chromosome leukemia results from the neoplastic transformation of 
Hematopoietic Stem Cells (HSCs) [1]. HSC is still able to differentiate 
into granulocytes during the Chronic Phase (CP) but this ability is 
lost during the Accelerated phase (AC) and/or a Blast Crisis (BC) 
characterized by the presence of several undifferentiated cells also 
in peripheral blood. The median duration of CP is 3-4 years. As the 
disease progresses, after the acquisition of additional genetic and/or 
epigenetic abnormalities, patients enter an accelerated phase followed 
by BC. This is the most aggressive phase and is characterized by a 
block of cell differentiation that results in the presence of 30% or 
more myeloid or lymphoid blast cells in peripheral blood or bone 
marrow [2]. The molecular hallmark of CML is the Philadelphia 
Chromosome (Ph), which results from a reciprocal translocation 
between the long arms of chromosomes 9 and 22 [t(9;22) (q11;q34)]. 
The Philadelphia chromosome contains a BCR-ABL hybrid gene 
that encodes an oncogenic fusion protein. The BCR-ABL protein has 
deregulated tyrosine kinase activity that promotes cell growth through 
phosphorylation of signaling proteins [3-7]. Depending on the 
precise breakpoints in the translocation and RNA splicing, different 
forms of BCR-ABL protein with different molecular weights (p185 
BCR-ABL, p210 BCR-ABL and p230 BCR-ABL) can be generated in 
patients. Such protein is localized exclusively to the cytoplasm and 
is able to constitutively tyrosine phosphorylate a host of substrates. 
Importantly, due to autophosphorylation, there is increased phospho-
Tyrosine (p-Tyr) on the BCR-ABL oncoprotein itself. Substrates of 
BCR-ABL can be grouped into three broad categories, depending 
on function: (1) adaptor molecules such as CrkL and p62Dok; (2) 
cell membrane and cytoskeleton related proteins such as talin and 
paxillin and (3) proteins with catalytic function such as Ras-GAP 
and Phospholipase Cg (PLCg) [8]. Tyrosine phosphorylation of these 
BCR-ABL substrates results in the constitutive activation of multiple 
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addition, other two second-generation oral, dual Src/Abl TKIs, has 
been shown to be more efficient than imatinib against CML cell 
lines such as Bosutinib (formerly SKI-606) [15]. Bafetinib (formerly 
INNO-406) [16,17]. The administration of second generation TKIs 
resulted in achieving a quicker response, significantly reduced 
progression to the later stages of the disease and increased overall 
survival. Nevertheless, BCR-ABLT315I is the most TKI-insensitive 
mutation which is referred to as the gatekeeper mutation that could 
not be targeted by second generation TKIs [18]. Therefore, there 
have been increased efforts to develop third generation TKIs that 
can target BCR-ABLT315I mutant, such as ponatinib [19] and DCC-
2036 [20]. CML patients who have responded to therapy and are in 
a state of remission harbour a very suppressed clone of CML cells 
which is referred to as Minimal Residual Disease (MRD) or Leukemia 
Stem Cells (LSCs) [21,22]. LSCs are responsible for the relapse of CP 
CML after the withdrawal of TKIs and therefore, patients are kept on 
lifelong TKI treatment after achieving remission. In addition, the TKI 
resistance of LSCs is not associated with the BCR-ABL kinase domain 
mutations [22]. These observations indicate that TKI-insensitive 
LSCs and TKI-sensitive leukemic progenitor cells are biologically 
different, which leads us to believe that LSCs and more differentiated 
leukemic cells have different genetic mechanisms [23].

The sphingosine kinases
These kinases regulate the generation of Sphingosine 1-Phosphate 

(S1P), although many other enzymes are also involved in the dynamic 
metabolic network of this bioactive lipid. Hence, they emerge as an 
excellent therapeutic target for modifying the levels of S1P. Among 
the biological and pathological processes that involve S1P, cancer 
and inflammation are top candidates for therapeutic intervention by 
targeting S1P production by SphK. It is highly expressed in different 
human tumors [24]. To date, two human isoforms of SphK genes, 
SphKl and SphK2, have been identified and cloned from different 
chromosomes. It is evolutionary highly conserved from yeast to 
human, in that five conserved domains have been identified from 
these isoforms across several species [25,26]. 

Sphingosine kinase 1: There are three isoforms of SphK1 
resulting from alternative splicing that differs only in their N-termini 
[27], however, little is known about their function in cancer. The 
oncogenic role of SphK1 was first defined with the demonstration 
that its over expression enabled non-transformed fibroblasts to form 
tumours in immunodeficient mice [28]. The connection between 
SphK1 and cancer was further recognized after the expression level 
of SphK1 in a diverse range of solid tumours was observed to be, on 
average, approximately 2-fold higher than in matched normal tissue 
[29]. Many tumour promoting factors, including Epidermal Growth 
Factor (EGF), Platelet-Derived Growth Factor (PDGF), Transforming 
Growth Factor Beta (TGFβ), and Phorbol 12-Myristate 13-Acetate 
(PMA) are known to activate SphK1 [30]. This activation can be 
achieved by inducing SphK1 mRNA expression, as demonstrated 
by up regulated SphK1 mRNA expression following treatment with 
PMA in leukaemia cells [31], or EGF [32] and 17β-estradiol in breast 
cancer cells [33]. In addition to the long-term activation produced by 
transcriptional up-regulation, SphK1 can be activated immediately 
and transiently: oncogenic stimuli can promote phosphorylation of 
SphK1 at its Serine225 (Ser225) residue by activated Extracellular 
Signal-Regulated Kinase (ERK). This causes its translocation from the 

cytosol to the plasma membrane, and such translocation is known 
to be a crucial mechanism for the oncogenic role of SphK1 because 
it promotes proliferation and tumourigenicity of non-cancer cells 
by increasing production of S1P, especially extracellular S1P [34]. 
Extracellular S1P secreted from the cells signals in an autocrine 
manner through S1P receptors [35], resulting in ERK activation, a 
well-known signal for cancer cell proliferation and migration [36], 
as well as activation of Phosphatidylinositol 3-kinase/Aktivin, 
Protein Kinase B (PI3K-Akt) pathway, a well-established oncogenic 
survival pathway [37]. In addition, the autocrine signalling of S1P 
from activated SphK1 can transactivate various oncogenic receptor 
tyrosine kinases [38-40]. 

Sphingosine kinase 2: SphK2, the other SphK isoform, is a 
relatively newly discovered enzyme [41]. In contrast to SphK1, 
the involvement of SphK2 in cancer is much less well understood 
and only recently emphasized with a handful of literature reports 
suggesting that it may play an important role in cancer cell 
proliferation. The mechanism through which endogenous SphK2 
activity promotes cancer cell proliferation and survival has not 
been thoroughly studied. Also noteworthy is that, in contrast to 
SphK1, SphK2 expression is not reported to be increased in any 
human cancer tissue. Whilst SphK1 over-expression promotes cell 
proliferation and oncogenic transformation, Sphk2 up-regulation 
has the opposite effect: inhibition of DNA synthesis cell cycle arrest 
[41], and induction of apoptosis [42]. This apoptotic role of SphK2 
over expression was later shown to be due to increased SphK activity 
in intracellular membrane structures, specifically the Endoplasmic 
Reticulum (ER) [43-45]. These studies emphasise that the distinct 
localization of SphK may enable the specific cellular functions of 
the enzyme. SphK1 mainly resides in the cytosol with occasional 
encounters with membrane structures, presumably for its oncogenic 
actions in the plasma membrane, whereas SphK2 is often associated 
with intracellular membrane structures including the ER [43] and 
nucleus [41]. Since SphK2 may function as an apoptotic effectors 
in the intracellular membranes, the recently revealed role of SphK2 
in proliferation may require its translocation. Comparable to the 
translocation of SphK1 from the cytosol to the plasma membrane, 
SphK2 is known to be translocated from the nucleus to the cytosol by 
external stimuli, including serum [46] and a cell growth promoting 
factor, PMA [47]. In addition, PMA increases SphK2 activity through 
ERK-mediated activation in breast cancer cells [48], indicating that 
the actions of SphK2 in the cytosol may act as a downstream effectors 
of various factors that promote cell proliferation and survival.

Sphingosine kinases and drug resistance
Many studies have implicated SphK1/S1P signalling in the process 

of drug resistance because this signalling protects cancer cells from 
chemotherapy-induced apoptosis. Considerable evidences indicate 
a deregulation of SphK1 in both acute and chronic myelogenous 
leukemia. Elevated levels of SphK1 have been identified in variety 
of leukemic cell lines, correlating with chemotherapeutic resistance 
[49], while high SphK1 expression appears to be integral for 
erythroleukaemic progression [50]. Furthermore, SphK1 expression 
has been shown to be up regulated by BCR-ABL gene fusion, with this 
event necessary for Myeloid cell leukemia-1 (Mcl-1)-expressing and 
enhanced cell survival in CML [51]. 
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Tyrosine Kinase inhibitors of BCR-ABL have improved the 
treatment outcome for CML and different studies have clarified the 
apoptotic mechanisms induced by TKIs, showing that they kill the 
CML cells emploing pro-apoptotic protein BIM [52]. On the other 
hand, different mechanisms for TKIs resistance have also been 
identified both BCR-ABL-dependent and –independent pathway. 

In addition, by activating various BCR-ABL-independent 
signaling pathways, quiescent CML-initiating cells are most likely 
insensitive to TKIs [53], while various components of Bone Marrow 
Microenvironment (BMME), i.e. leukemia niches, also protects CML 
cells from TKIs [54,55]. Recent studies elucidated the molecular 
mechanism by which SphK1 induces the acquisition of resistance to 
the anticancer agent imatinib in CML [56,57]. CML patients express 
the oncoprotein BCR-ABL, a constitutively active tyrosine kinase that 
activates multiple signaling pathways to promote cancer progression. 
Imatinib, a BCR-ABL inhibitor, is the mainstay therapeutic option 
for treatment of CML. SphK1 contributes to the resistance of CML 
cells to this anticancer agent as demonstrated by the finding that 
siRNA knock-down of SphK1 expression sensitizes resistant CML 
cells to imatinib whereas enforced expression of SphK1 prevents 
apoptosis in response to this drug in sensitive CML cells [56,58]. 
Salas and colleagues [57] demonstrated that S1P/S1P2 signaling 
regulates BCR-ABL stability in CML cells by inhibiting the activity of 
the protein phosphatase PP2A. This prevents the dephosphorylation 
of BCR-ABL and therefore its proteasomal degradation, resulting 
in the accumulation of the oncoprotein. Thus, inhibition of the 
SphK1/S1P/S1P2 pathway sensitizes CML cells to imatinib by 
restoring the PP2A-dependent dephosphorylation and subsequent 
degradation of BCR-ABL [57]. Evidence also exists that the SphK1/
S1P/S1P receptors pathway enhances the expression and activity of 
drug efflux pumps in cancer cells, which are major contributors to 
the development of multidrug resistance in cancer [59]. This might 
represent an additional mechanism by which SphK1 contributes 
to chemotherapy resistance. SphK2 is also involved in resistance 
to chemotherapy. This is exemplified by the finding that siRNA 
knockdown of SphK2 expression enhances apoptosis induced by the 
anti-cancer agent doxorubicin in breast and colon cancer cells, an 
effect that was associated with a reduction in the expression of the 
cell-cycle regulator protein p21 [60]. 

Sphingosine kinase inhibitors
The rational for developing SphK inhibitors is based on two 

facts: 1) the catalytic product of SphK and S1P plays an essential role 
in promoting cell proliferation and migration via its receptors and 
downstream proteins; 2) and SphKs are the key enzymes that control 
the balance between mitogenic S1P and apoptotic ceramides, also 
known as the “sphingolipid rheostat”. In other words, SphK inhibitors 
could include: a) kinase inhibitors that can suppress the catalytic 
function of SphK, which subsequently decreases the production of 
S1P at the extracellular, intracellular, and even b) specific sub-cellular 
compartment level. Based on the above observations, S1P signaling 
is implicated in cell proliferation, migration, angiogenesis, and 
autophagy; all processes that facilitate cancer progression. Therefore, 
blocking of S1P signaling may be a potential target for cancer therapy. 

There are a number of pre-clinical studies examining the effect 
of FTY720 (fingolimod) a synthetic myriocin analogue (2-amino-
2-[2-(4-octylphenyl) ethyl] propane-1, 3-dio) on hematological 

malignancies. FTY720 is phosphorylated  in vivo  by sphingosine 
kinase 2 and binds to all four of the currently known Sphingosine 
1 Phosphate (S1P) receptors (S1PR1, S1PR3, S1PR4, and S1PR5) with 
high affinity. Upon binding of p-FTY720, the S1PRs are internalized 
from the cell membrane and degraded, resulting in the sequestration 
of lymphocytes in secondary lymphoid organs [61]. Moreover, 
FTY720 was recently shown to be therapeutically active against several 
solid tumors, Multiple Myeloma, Chronic Lymphocytic Leukemia 
(CLL) [62,63], Mantle Cell Lymphoma [64], murine cell line models 
of Acute Myeloid Leukemia (AML) with KIT mutations, and a rat 
model of Natural Killer-cell (NK) leukemia [64,65]. In light of the 
studies by Salas et al. [57] and Tonelli et al. [66], it is conceivable that 
FTY720-induced apoptosis in CML cells might be due not only to its 
direct action on PP2A but also to the inhibition of SphK1 activity and 
consequent disruption of the S1P/S1P2 signaling. 

In a recent report, it has been demonstrated that FTY720 is able 
to induce apoptosis of leukemic cells via activation of both BIM and 
BID and can overcome various type of resistance to TKIs used in 
the treatment of CML. Kiyota M et al. have investigated the precise 
mechanisms underlying the apoptosis caused by FTY720, especially 
focusing on the roles of BH3- only proteins. Hence, FTY720 activates 
proapoptotic BH3 -only proteins: BIM, which is essential for apoptosis 
by BCR-ABL TKIs and BID, which accelerates the extrinsic apoptosis. 
Finally, these results provide the rationale that such drug, with its 
unique effect on BIM and BID, could lead to new therapeutic strategy 
for CML [68]. In another study, Neviani P. et al, have presented the 
investigation of FTY720 as novel therapeutic approach for patients 
with imatinib/dasatinib sensitive and -resistant advanced CML and 
Ph-positive Acute Lymphocytic Leukemia (ALL). FTY720 is able to 
induce marked apoptosis of CML-BC (Blast Crisis), Ph–positive ALL 
CD 34+ /CD 19+ patient cells by impairing –BCR-ABL activity [69]. 
Furthermore, in vivo long-term administration of pharmacologic 
FTY720 doses not induce adverse effects and significantly inhibits 
wild-type and T315I p210 and p190 BCR/ABL leukemogenesis in 
mice [70]. In particular, two recent reports have demonstrated that 
restoration of PP2A activity by FTY720 or its derivatives (S)-FTY720-
OMe, (S)-FTY720-regioisomer are able to block the proliferation 
of Leukemia Stem Cells (LSCs) (derived by CML patients), but not 
of quiescent Hemapoietic Stem Cells (HSCs) (derived by healthy 
individuals) both in vitro and in vivo [71,72]. There are other 
inhibitors: threo-DHS (threo-dihydrosphingosine), a sphingosine 
competitive inhibitor of SphK1 [24] and Safingol (L-threo-DHS), a 
synthetic L stereoisomer of endogenous threo-dihydrosphinganine, 
that may be more suited to inhibit SphK1 [73]. In spite of the fact that 
it induces autophagy in colon carcinoma cells through inhibition of 
Protein kinase C (PKC) and the PI3K pathway [74], it entered clinical 
trials as an anticancer drug. In combination with cisplatin, it can be 
safely administered with reversible dose dependent hepatic toxicity 
[75]; however, no data from phase II clinical trial is reported. SphK1-
1 (2R, 3S,4 E)-N -methyl-5-( 4’ -pentylphenyl)-2-aminopent-4-
ene-I,3- diol) is a sphingosine analogue that is water-soluble and cell 
permeable [60]. It decreases growth and survival of human leukemia 
U937 and Jurkat cells, and enhances apoptosis and cleavage of Bcl-2 
[76]. 

Conclusion
Due to the important roles of S1P in tumor genesis, targeting of 
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S1P signaling may potentially serve as an adjuvant for cancer therapy. 
Since S1P is generated from sphingosine by SphKs, the factors that 
regulate the balance of the ceramide-sphingosine-S1P rheostat 
towards ceramide and decreasing SphK activity may be candidates 
for anti-cancer drug development. In addition, the findings indicate 
that combination therapies of SphK1/SphK2 inhibitors with 
conventional anticancer agents might be a valuable option for the 
clinical management of therapeutic-resistant cancers. 
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