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Abstract
Epigenetic regulation mechanisms in stem cells are crucial for self-renewal 

and differentiation capacities, however these abilities are deregulated in cancer 
stem cells (CSCs), which are able to induce and maintain the tumor growth. Due 
to cancer stem cells share physiologic properties with their normal counterparts, 
there is a rationale to evaluate epigenetic regulation mechanisms that drive the 
unpaired self-renewal and differentiation abilities resulting in cancer. DNA and 
histone methylation plays a relevant role in the gene expression regulation of 
components belong to cell signaling pathways involved in self-renewal CSCs 
such as Wnt, Notch and Hg. In this review, we make an overview of epigenetic 
mechanisms to regulate the highly CSCs tumorigenicity methylation-mediated.  
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theory, all cancer cells have the capacity to induce tumor growth. 
Thus, there is the possibility that cancer cells could be reprogrammed 
to become TICs by epigenetic and genetic changes which are related 
with the heterogenicity among cancer cells [15].

In a specific manner, in melanoma the tumorigenic ability is 
not restricted to small population of this neoplaisa, but interestingly 
these cells are widely shared among phenotypically diverse cells. 
Also, these distinct melanoma cells form tumors that recapitulated 
the phenotypic diversity of the tumor which they derived, suggesting 
that these tumorigenic melanoma cells undergo reversible changes 
in markers expression in vivo [15]. Studies in melanomas obtained 
from patients, can be observed and a broad range of markers turn 
on and turn off into lineages of tumorigenic cells, phenomenon 
named “phenotypic plasticity” [15,16]. However, there are several 
groups that still evaluating the presence of CSCs in different cancers 
including hematopoietic malignances and solid tumors [17].

These characteristics and functions of CSC and/or TIC including 
their thinning differences could be related with the resting time of 
quiescent stem cells increasing the rate of mutation in key genes, 
but also epigenetic mechanisms which can regulate gene expression 
related with stemness and tumorigenicity. 

Epigenetic of CSC

The CSC and their normal counterparts share some characteristics 
including some epigenetic gene expression regulation such as 
chromatin remodeling factors, DNA methylation, microRNAs 
and post-translational modifications such as phosphorylation, 
acetylation, ubiquitination, and SUMOylation [18]. We will take up 
the methylation epigenetic regulations in cancer stem cells.

Self-renewal, cell differentiation and proliferation are crucial 
activities that are deregulated in CSCs. In addition to understand 
the mechanisms related with the high tumorigenic capacity of CSCs, 
it is necessary knowing the cellular and molecular rules that drive 
uncontrolled self-renewal and aberrant differentiation to design new 
and accurate therapeutics strategies to help patients with cancer.

Cancer stem cells

Cancer still be a significant human public disease in whole 
world. Into the tumor, there are highly heterogenic cell populations 
that shown different cancer hallmarks such as resisting cell death, 
epithelial-mesenchymal transition (EMT), mutations in tumor 
suppressor proteins and oncoprotiens [1]. Furthermore, epigenetic 
mechanisms also have relevant impact to drive the carcinogenesis 
and contribute to get cells with unlike level of differentiation resulting 
cells with different properties and capabilities including their 
tumorigenic potential. Taken together, these hallmarks sustained the 
cancer stem cells (CSC) or  “Tumor Initiation Cells (TIC)” model, 
which in addition to have highly potential to induce and maintain 
tumor growth, these cells are able to rinse cells with different level of 
differentiation and also with high cell proliferation rate to form the 
tumor mass. Self-renewal, potential of differentiation and quiescent 
state are some representative capabilities of CSC that share with 
their normal counterparts[2]. The origin of CSCs remain unknown, 
however there are some theories including niche environment, 
accumulation of mutations in crucial genes as tumor suppressor and 
oncogenes, which are related with apoptosis evasion, drug resistance, 
drug exclusion mechanisms mediated by ABC bomb [3], active 
DNA repair system and key proteins involved in signal transduction 
pathways promoting self-renewal and cell proliferation such as Wnt, 
Notch and Hg pathways [4]. Pluripotent associated transcription 
factors such as OCT-4, SOX-2, NANOG, MYC regulate the embryonic 
stemness including their pluripotency to differentiation, however 
these factors have been expressed in adult CSC from several tumors 
[5] such as pancreatic intraepithelial neoplasia [6], lung cancer [7], 
breast cancer [8], brain cancers [9], hepatocellular carcinoma [10]. 
The expression of pluripotent markers into tumors could explain the 
presence of undifferentiated cancer cells which are related with poor 
prognosis. 

In contrast, there are some studies that show the presence of 
non-leukemogenic cancer cells with rarely ability to induce tumor 
generation in specific conditions [11-14]. Under clonal evolution 
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In humans, DNA methylation is generated by DNA 
methyltransferase 1 (DNMT1) and maintained by DNMT3A and 
DNMT3B [19, 20]. In mice leukemia model, using knockout of 
Dntm1, further pre-leukemia development is blocked compare to 
Dnmt1wild type. This role could be explained in part for possible 
hypomethylation of tumor suppressor genes. Trough ChIP assay 
using H3K27me3 antibodies, Trowbridge and collaborators found 
that the Enhancer Zeste Homologue 2 (EZH2)-regulated target genes 
are depressed in Dntm1 haplo-insufficient mice model, suggesting 
that Polycomb gene (PcG) complex might cooperate with DNA 
methylation to regulate leukemia stem cell functions such as to 
induce tumor growth [21].

PcG, it has been considered as a relevant complex for gene 
expression regulation including cancer. Upregulation of EZH2 
promotes several cancer progression such as prostate, ovarian and 
breast cancer [22,23]. In ovarian cancer, there is a direct relationship 
by the EZH2 expression in the side population (SP) tested, a subset 
enriched in CSCs [24]. In breast cancer, a high level of EZH2 
expression induces a spreading out of TICs demonstrated by the 
mammosphere formation assay. This effect is mediated in part or 
the aberrant accumulation of β-catenin mediated by RAF1-ERK 
activation upon EZH2 overexpression. It is known that canonic 
Wnt- β-catenin pathway is close related with self-renewal capacity of 
stem cells. Additionally, RAD51 a component of DNA damage repair 
system, is downregulted in response of an increase of EZH2 leading 
specific genomic instability and tumor progression [25]. 

Components of PcG complex, including EZH2, are decreased in 
pancreatic cancer cells treated with difluorinated-curcimin (CDF). 
This event is related with a decrease of pancreactic CSC markers 
such as CD44, EpCAM and also the transcription factor OCT-4. 
Furthermore, falling EZH2 expression is associated with reducing of 
Notch. Interesting, also under CDF treatment, there is an increase 
of the micro RNA-101 (miR-101), which belong to panel of tumor-
suppressors miRNAs. Taken together, these findings demonstrate 
that these epigenetic molecular CDF-effects result in ablation of 
pancreatic CSCs in vitro and in vivo assays [26]. Similar results are 
obtained by 3-Dezaneplanocin A (DZNeP), which it has been used 
for the treatment of several cancers. Under the treatment of DZNeP, 
like CDF as EZH2 inhibitor, a depression in sphere formation of 
LNCaP and DU145 prostate cancer cell lines is observed. It means 
that DZNeP has a cytotoxic effect on CSCs [27]. 

Both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are 
expressed in gliomastoma cells where they have an effect on CSC 
activities including the sphere formation and promote CD133, 
OCT-4, NANOG and MYC expression [28,29]. The hypoxia CSC 
microenvironment factors the expression and activity of the histone 
methyltransferase mixed-lineage leukemia (MLL1) and it enhance 
hypoxia responses. Using a shRNA MML-1 in glioma cells, a 
diminishing if HIF-2α expression and ablation of glioma sphere 
formation was observed, and also a decreasing of glioma stem cells 
represented by the measure of CD133-positive cells was observed. 
Actually MLL-1 and the marker CD133 co-localized in glioma sphere 
cells [30]. These observations suggest the relevant role of MLL-1 in 
the tumorigenic of CSCs.

In addition of EZH2 effect on CSCs, it also be relevant the 

opposite effect of histone demethylases as LSD1/KMD1 that suppress 
gene expression by converting di-methylated to mono and un-
methylated H3K4. However, the expression of LSD1 is related with 
pluripotent markers OCT-4, SOX-2 and NANOG expression which 
are also expressed in most of CSCs. Transient knockdown of LSD1 
decrease expression of these pluripotent stem markers followed by the 
growth inhibition of pluripotent cancer cells such as teratocarcinoma, 
embryonic carcinoma and seminoma [31]. 

Conclusion 
For better understanding CSCs biology, it is necessary to know 

must of mechanism that regulate their stemness and tumorigenicity. 
In this overview about epigenetic gene expression regulation focused 
in DNA and histone methylation, we remark the crucial role of these 
mechanisms to favor the CSCs deregulated self-renewal capacity 
and their highly tumorigenicity. However, it is clear that not only 
DNA and histone methylation, which are close related, are relevant 
epigenetic mechanisms; other histone modifications and miRNAs 
are also implicated. Finally, in addition to several researchers, we 
are convinced that epigenetic factors related with CSCs have to be 
considered as therapeutic targets to prevent and eradicate cancer in 
patients.
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