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Abstract

Introduction: Lung cancer is the most commonly occurring cancer for both 
men and women with the highest associated mortality rate. Positron emission 
tomography and computed tomography (PET-CT) are accurate evaluation 
modalities in determining lung cancer extent and aggression. An efficient and 
reliable computerized tumor volume (TV) delineation system, based on PET-CT 
imaging is needed for accurate tumor response analysis during daily clinical 
practice and in large clinical trial.

Purpose: To present and validate a novel computer-aided, semi-automatic 
co-segmentation method for lung tumor volume (co-segmented TVPET-CT) that 
integrates tumor boundaries on both PET and CT.

Methods and Materials: Eighteen patients were included all of whom had 
stage III/IV NSCLC had received chemoradiotherapy, PET-CT simulation pre-
radiotherapy and a CT scan at 2-4 months follow-up post-radiotherapy. Pre-
radiotherapy GTV (pre-GTV) on PET-CT images were retrospectively contoured 
by two physicians who reached consensus on the volume and then used this as 
the reference tumor volume. The statistical correlation were analyzed between 
the reference tumor volume and different segmented tumor volumes; co-
segmented TVPET-CT, segmented Tumor Volume on CT alone (TVCT), segmented 
Tumor Volume on PET alone (TVPET), Tumor Volume (TVSUV2.5) delineated 
using the SUV2.5 threshold, and Tumor Volume (TVSUVmean) using the SUVMEAN 
threshold.

Results: The co-segmented TVPET-CT showed the most significant correlation 
with pre-GTV (correlation coefficient = 0.993), along with the most favorable 
ASSD (1.48 ± 0.8 mm) and DSC values (0.85 ± 0.07). TVSUV2.5, TVCT, TVPET, and 
post-GTV significantly correlated with pre-GTV (P < 0.001) except for TVSUVmean 
(P = 0.42). Smoking status and histology presented significant correlation 
with %ΔTV (P = 0.0273 and P = 0.0297 respectively) while no significant 
correlations in gender, age, and stage were evident. None of other computer-
aided segmented tumor volumes or SUVs correlated with %ΔTV. The overall 
averaged tumor response rate after chemoradiotherapy in 2 - 4 months is 70 
± 18.6%. 

Conclusion: The co-segmented tumor volume on PET-CT was most 
strongly correlated with two-physician-consensus manual contouring that 
clinically incorporates PET and CT information. 

Keywords: PET-CT; Computer-aided segmentation co-segmentation; 
Non-small cell lung cancer; PET

in the tumor diameter using RECIST criteria (response evaluation 
criteria in solid tumors) [6,7]. Consequently, there is a compelling 
need for the more accurate measurement of the tumor volume for 
identifying tumor extent for treatment and quantifying tumor 
response to treatment. 

Studies suggest that the combination of functional (PET) and 
anatomical imaging (CT) (PET-CT) is a reliable indicator of tumor 
extent and distribution [1,8]. The use of PET-CT imaging altered 
the tumor volume delineation of NSCLC in more than 50% of 
patients when compared with CT-based tumor volume alone [9,10]. 

Introduction
Lung cancer is the leading cause of cancer-related death in the 

world [1]. During 2013 it caused 159,260 deaths in the United States 
[2] with only a 16.3% 5-year overall survival [3]. Eighty-five percent 
of lung cancers are diagnosed as NSCLC, and 70% of patients present 
with advanced disease (stage III - IV) [4,5]. Clinical decision making 
is generally predicted upon tumor response with complete response 
defined as tumor disappearance, partial response as more than 25% 
decrease in size measured by CT, stable disease as less than 25% 
decrease or increase, progressive disease as greater than 25% increase 
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Information obtained from combined PET-CT imaging that cannot 
be obtained from PET only data for lung cancer patients enables 
the physician to differentiate between anatomic pathological and 
physiological changes. In radiation oncology practice, manual 
contouring is still needed in order to delineate the tumor on PET-CT 
in order to reconcile the two tumor volumes (TVs) defined separately 
on CT and PET; a process that is time consuming, cumbersome, and 
error-prone. It also suffers from substantial inter- and intra-observer 
variability, which limits its utility in large-scale clinical trial research 
[11]. Reliable auto-segmentation methods that quantitatively analyze 
PET-CT datasets quickly, robustly, and objectively are presently not 
clinically available. Existing PET-CT segmentation methods currently 
in use either work only for a single modality (PET or CT) or work on 
one image set represented by the fused PET-CT datasets [12]. 

In this study we propose a novel co-segmentation framework 
using PET-CT, where TV is co-segmented simultaneously, yet 
separately, using both PET and CT datasets while admitting the 
uncertainties described above.

Methods and Materials 
PET-CT Co-segmentation algorithm 

The process for co-segmenting a tumor volume on PET-CT (co-
segmented TVPET-CT) starts from a physician-identified tumor location 
(Figure 1A). This is accomplished by asking the physician to identify 
the center of the tumor using three planes on the PET-CT. This is the 
only step requiring a clinician’s input. Afterwards, segmentation is 

simultaneously performed on each CT and PET image, and globally 
optimized using the mutual information from both segmentations to 
generate a co-segmented TVPET-CT based on the algorithm described 
by Song et al. [13]. To co-segment the tumor from both PET and 
CT scans, we added a PET-CT context term EPET−CT to the energy 
functions of CT and PET (Equations (2) and (3) in Ref [13]), which 
penalizes the segmentation difference between the two image datasets 
(Figure 1 B). Without loss of generality, we assume that the PET 
and CT images, IP and IC, are registered. Let (p, p’ ) denote a pair of 
corresponding voxels in IP and IC. We penalize the label difference wi
th                             for p and p’. The PET-CT context term then takes 
the form:

( )
( )

( )' '
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Note that the PET-CT context constraint is soft with
( , )P C

pp p pf fδ ′ ′ < +∞ , which accounts for the tumor boundary 
differences between PET and CT. The corresponding voxels in 
PET and in CT could be assigned different labels (“object” or 
“background”) if prominent features present very differently in 
PET from in CT, which could be caused by imaging uncertainties, 
registration errors, or both. Our method is thus able to accommodate 
those uncertainties, further improving its applicability. The energy 
function of our co-segmentation algorithm is defined as follows:   

( ) ( ) ( ), ( , )P C P C P C
cs PET CT PET CTE f f E f E f E f f−= + +

   
                (1)

We used a more flexible PET-CT context term EPET−CT to make 
use of the dual modality information [13]. We also minimized the co-
segmentation energy function Ecs by solving a minimum cost s-t cut 
problem in a transformed graph G, which allows a globally optimal 
solution in low-order polynomial time. To enforce the PET-CT 
context term EPET−CT, additional inter-sub-graph arcs are introduced 
between GP and GC. Figure 1 B illustrates the construction of the 
graph G, with green arcs encoding the PET-CT context term EPET−

CT. The minimum-cost s-t cut in G defines an optimal delineation of 
tumor volume in both PET and CT images with respect to the energy 
function (1). 

Validation of Co-Segmentation on PET-CT

Records of 649 lung cancer patients were reviewed. A total of 
18 patients fulfilled the criteria and their characteristics are listed in 
Table 1. All patients in this study were enrolled in a NIH approved 
U01 imaging study. Patients with stage III/IV NSCLC received 
chemotherapy and lung radiation. The most commonly used 
chemotherapy regimen was carboplatin and taxol. Other regimens 
such as carboplatin alone or carboplatin and etoposide were used in 
a lesser frequency at the physician’s discretion. Radiation techniques 
include intensity-modulated radiation therapy and conventional 3D 
conformal RT. All patients had PET-CT imaging for simulation and 
PET-CT (2 patients) or CT (16 patients) at 2-4 months follow-up 
post-radiation were included. Manual contouring of the pre-GTV 
was conducted on the registered PET-CT dataset in order to clinically 
incorporate metabolic PET and morphologic CT information. The 
tumor contours of the pre-treatment GTV (pre-GTV) and post-
treatment residual GTV (post-GTV) were retrospectively generated 
after thorough consultation between two radiation oncologists. The 

Figure 1: (A) Example slices of the initialization step in the fused image of 
PET (thermal) and CT (gray scale). The orange sphere completely lies inside 
the tumor and the blue sphere completely contains the tumor. (B) Graph 
construction of G with two sub-graphs GC (Graph from CT) and GP (Graph 
from PET) for the co-segmentation of PET-CT images. Three types of arcs 
are introduced. The orange arcs encode the boundary terms; the brown arcs 
encode data terms; and the green arcs enforce the PET-CT context term in 
the co-segmentation energy function.

Gender Number Chemotherapy Number

Male 9 Carboplatin 3

Female 9 Carboplatin + taxol 13

Carboplatin + etoposide 2

Age Number Histology Number

Mean 58.3 years Squamous cell 8

Range (47 – 71 years) Adenocarcinoma 9

NSCLC (non-classified) 1

Stage Number Prescription dose

III 11 Mean 65 Gy

IV 7 Range (50 - 70 Gy)

Table 1: Patients’ characteristics

' '( , )P C
pp p pf fδ
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pre-GTV was used as a reference tumor volume for validation and 
comparisons of different (semi-)automated tumor volumes. Tumor 
response after chemoradiotherapy was determined by measuring 
volume changes between pre- and post-GTV. The percent tumor 
response was obtained using:

( )tumor response 100pre GTV post GTV
pre GTV

− − −
= ×

− . 

To validate the computer-aided, semi-automatic co-segmented 
TVPET-CT, we compared the co-segmented TVPET-CT with the reference 
tumor volume dataset (pre-GTV) (Figure 2). Another four (semi-)
automatic segmented tumor volumes were generated and compared 
(Figure 2): 1) segmented TVCT that is segmented TV on CT alone, 2) 
segmented TVPET that is segmented TV on PET alone, 3) TVSUV-MEAN 
that is segmented based on mean SUV of pre-GTV and 4) TVSUV2.5 
tumor volume that has a SUV of at least 2.5 [14]. Tumor volume, 
tumor response and SUV characteristics are listed in Table 2. The 
Average Symmetric Surface Distance (ASSD) and the Dice Similarity 
Coefficient (DSC) between each TV metric and the reference dataset 
were calculated. The DSC between the reference tumor volume which 
is pre-GTV and a computer-segmented tumor volume (segmented-
TV), i.e., either co-segmented TVPET-CT, TVPET, TVCT, TVSUV2.5, or 
TVSUVmean, is defined as

2 |  |
| |

pre GTV segmentedTV
DSC

pre GTV segmentedTV
−

=
− +

∩
DSC measures how well two volumes overlap with each other. The 

value range of the DSC is [0, 1]. A value of 0 represents no overlap at 
all while a value of 1 represents a perfect overlap of two volumes. The 
values of the DSC represent similarity between two TVs, thus larger 
values represent a better geometrical match. The ASSD between two 
surfaces A and B is defined as 

( ) ( )min min , min min ,b B b B a A a Aa A b B
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ASSD
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in which a ∈ A and a ∈ B are points on surface A and B, 
respectively. A Denotes the reference tumor volume surface and B 
denotes the computed surface. d(a,b) Is the distance between points 
a and b. NA and NB are the number of points on surface A and B, 
respectively. ASSD measures how well the two surfaces align with 
each other. A smaller ASSD value means better alignment between 
two surfaces. A value of 0 means perfect alignment between two 
surfaces. The statistical correlation between different tumor volumes 
(pre-GTV, co-segmented TVPET-CT, TVPET, TVCT, TVSUV2.5) and 
percent tumor response was tested using Spearman’s correlation 
coefficient. Univariate analysis using linear regression models was 
performed to assess correlation between percent tumor response 
and different metrics including different tumor volumes, and SUVs. 
Other prognostic factors such as gender, age, tumor stage, histology, 
and smoking status were also analyzed. A Student T-test was used to 
evaluate the differences of ASSD and DSC between the co-segmented 
TVPET-CT and other segmented tumor volumes. Statistical analysis was 
performed using SAS 9.3 (SAS institute Inc., Cary, NC).

Results
Co-segmented Tumor Volume on PET-CT

Co-segmented TVPET-CT was found to show the best statistical 
correlation with the reference tumor volume dataset (pre-GTV) (R2 
= 0.993) (Figure 3). Except for TVSUV-MEAN (P = 0.4244 R2 = 0.040), 
all other (semi-) automated tumor volumes (co-segmented TVPET-

CT, segmented TVCT, segmented TVPET, TVSUV2.5, and post-GTV), 
presented significant correlations with the pre-GTV (P<0.001) 
(Figure 3). 

The co-segmented TVPET-CT had the smallest ASSD values and 
standard deviations with pre-GTV. On the other hand, it also had the 
largest DSC values and smallest standard deviations with pre-GTV. 
According to the paired student T-test, ASSD and DSC of the co-
segmented TVPET- 4). Post-GTV was also observed to have statistical 
correlation with a pre-GTV (P < 0.0001). Figure 2 illustrates CT 
were significantly better than other tumor metrics including TVSUV 

2.5, TVSUV-MEAN, segmented TVCT, segmented TVPET (P <0.0001) 
(Figure the tumor volume differences of TVSUV 2.5, segmented TVCT, 
segmented TVPET, and co-segmented TVPET-CT when compared to the 
reference tumor volume dataset. 

The overall average tumor response rate after chemoradiotherapy 
after 2 - 4 months is 70 +/-18.6%. Squamous cell histology responded 
better compared to adenocarcinoma. The overall tumor response 
pattern was modeled as post-GTV = -10.00 + 0.36 × pre-GTV (R2 = 

Figure 2: Illustration to show that co-segmented TVPET-CT (blue contour) 
presents the most favorable match with the reference TV (red) (A) when 
comparing to other segmented TVs (B); TVPET (Cyan), TVCT (Purple), 
and TVSUV2.5 (Green). TVPET-CT, TVPET, and TVSUV2.5 are compared 
on PET imaging (C). Abbreviations: co-segmented TVPET-CT = Co-
segmented tumor volume on PET-CT, TVSUV2.5 = SUV2.5 threshold based 
tumor volume, TVCT = Segmented tumor volume on CT alone, and TVPET = 
Segmented tumor volume on PET alone.

Tumor response: GTV Pre-GTV: Volume

Mean 70% Mean 160.3 cc

Range (18.6% - 95%) Range (13.8 – 506.9 cc)

Post-GTV: Volume Co-segmented GTV on PET-CT: Volume

Mean 47.8 cc Mean 148.9 cc

Range (0.7 – 242.3 cc) Range (9.3 – 490.8 cc)

Mean SUV Max SUV

Mean 6.6 Mean 16.7

Range (1.4 – 10.8) Range (2.6 – 28)

Table 2: Tumor volume, tumor response and SUV characteristics.
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Figure 3: TVSUV2.5, TVCT, TVPET, co-segmented TVPET-CT and post-GTV correlated with physician contoured pre-GTV (P < 0.001), while TVSUVmean had 
no correlation with pre-GTV (P = 0.42). Abbreviations: TVPET-CT = Co-segmented tumor volume on PET-CT, TVSUV2.5 = SUV2.5 threshold based tumor 
volume, TVSUVmean = mean SUV of pre-GTV based tumor volume, TVCT = Segmented tumor volume on CT alone, and TVPET = Segmented tumor volume on 
PET alone.

Figure 4: Quantitative performance evaluation on preliminary 18 PET-CT datasets. Average and standard deviation of the DSC values over all datasets (A). The 
ASSD values for each individual dataset (B).
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0.75). Squamous cell and adenocarcinoma tumor response patterns 
were modeled as post-GTV = 0.71 + 0.20 × pre-GTV (R2=0.86) and 
post-GTV = -5.24 + 0.38 × pre-GTV (R2=0.75) respectively. No 
significant correlation was found between tumor response and each 
tumor metric including pre-GTV (R2=0.047), mean SUV in pre- GTV 
(R2=0.124), maximum SUV (R2=0.008), TVSUV2.5 (R2=0.207), and co-
segmented TVPET-CT (R2=0.204). Univariate analyses were performed 
to identify any potential predictive factor(s) relating to tumor 
response. Tumor response was better for squamous cell carcinoma 
than adenocarcinoma (P=0.0297) and former smokers had more 
significant tumor response than current smokers (P=0.0273). 
Gender, age and stage have no impact on tumor response in our study 
(P=0.9856, P=0.3032, and P=0.5220 respectively).

Discussion
To avoid pathological differences, the analyses in this study were 

performed on only NSCLC datasets. Tumor response in this study 
was focused on the primary tumor [15,16] as tumor burden is linked 
with the survival of NSCLC patients [10,17]. If 18F-FDG PET datasets 
are available before and after therapy, tumor response can be also 
evaluated using the criteria of the European Organization for Research 
and Treatment of Cancer (EORTC) [18]. Antoch [19]. Proposed a 
tumor response evaluation method utilizing both RECIST criteria 
[6] and EORTC criteria. For instance, if either the CT or the PET 
dataset suggests no change but the other imaging modality indicates 
a partial response, then the final decision is based upon the density 
of the lesion on CT as measured by Hounsfield Units (HU). They 
reported tumor response using this combined criteria with an overall 
accuracy of 95% after 1 month of gefitinib therapy [19]. The accuracy 
of PET and CT alone were 85% and 44%, respectively [19]. Due to the 
lack of post-therapy PET datasets, tumor response in this study was 
quantified as percent tumor volume changes on CT. No significant 
correlation was found between percent tumor response based on 
CT and each tumor metric; pre-GTV (P=0.39), mean SUV (P=0.15), 
TVSUV 2.5 (P=0.25), maximum SUV (P=0.74) and co-segmented TVPET-

CT (P=0.88). The predictive power of the proposed co-segmented 
TVPET-CT datasets over current metrics, e.g. SUV and tumor volume 
on either CT or PET, remains to be explored when using EORTC and 
RECIST criteria combined. In addition, its prognostic power over 
progress free tumor control and overall survival should be evaluated 
through a prospective clinical trial. 

A rigorous and robust TV delineation is essential in order to 
achieve the high level of predictive certainty for tumor response 
assessment, especially in patients receiving high-dose RT such as 
stereotactic body RT. In comparison with manual contouring and 
computer-aided TV segmentation, the semi-automated, segmented 
TV was found to be a more accurate technique with less inter observer 
variation, and remained consistent under varying imaging conditions 
[20]. The segmentation technique presented the least systematic bias: 
it showed a mean percent error of 0.05% compared to 25% when 
using a threshold technique [21]. 

None of the current prognostic PET-CT assays integrate the 
morphologic information obtained from CT to define the tumor 
extent, especially for the primary lung tumor [21]. All assays utilize 
PET information only. All current prognostic assays are restricted 
by the uncertainties and limitations imposed by PET only imaging. 

Manually delineating the tumor volume solely on CT images predicts 
overall and cause-specific survival, as well as local tumor control 
in NSCLC patients when using 3D conformal radiotherapy [22]. 
The current TNM staging system measures only one dimension in 
relation to the total size of a tumor on CT, instead of measuring the 
tumor volume in 3-D [7,23]. No prognostic assay has been proposed 
to integrate the functional with the morphologic information from 
PET to CT datasets. The full utility of integrating functional and 
morphologic information from PET-CT images sets as proposed in 
this prognostic assay using co-segmented tumor volume remains 
to be explored. In this study, the co-segmented tumor volume was 
generated using a computer-aided, semi-automatic segmentation 
method. This approach has the potential to shift the current prognostic 
assay paradigm in two ways. Firstly, it significantly improves the 
accuracy of identifying the tumor extent. The segmentation technique 
presents the least systematic bias; it shows a mean percent error of 
0.05% compared to 25% when using a threshold technique [21]. 
Secondly, a semi-automatic process makes it widely applicable to 
prognostic staging, diagnosis, and large-scale clinical trials. However, 
current PET-CT segmentation methods either work only for a single 
modality or work for the fused PET-CT datasets [12] that require 
stringent registration between PET and CT, which is impractical. 
Even with an integrated PET-CT scanner, the acquired PET and CT 
images may not be well aligned due to the longer acquisition time of 
the PET scan. Furthermore, due to the different imaging mechanisms, 
the tumor boundary defined in PET images is not identical to that 
defined in CT images. The presented co-segmentation method allows 
the quantitative analysis of PET-CT datasets using tumor extent 
information from both functional and morphologic imaging. 

The results of this study have some limitations that require 
further research and should be considered carefully prior to further 
research or clinical application. These limitations are: 1. Accurate 
segmentation using this method is only valid in lung cancer patients 
because the CT co-segmentation portion relies significantly on the 
CT density difference between the tumor and the surrounding tissues 
on CT images. Theoretically, using this method will be less effective 
in patients with bulky mediastinal or hilar lymphadenopathy without 
a distinct primary tumor. Further applications in other anatomical 
tumor sites will require rigorous testing. 2. This study revealed an 
average tumor response time of 2-4 months after therapy. These 
results are based on 70% of the pre-chemoradiation and post-
chemoradiation datasets being available for study. However, this 
statement should be viewed cautiously considering the difficulty 
of differentiating between residual tumor and treatment-induced 
lung fibrosis on post-treatment CT images only. Tumor response 
associated with surgery and/or chemotherapy requires further 
investigation.

Conclusion 
Globally optimized co-segmented tumor volumes on PET-CT 

presented the most significant correlation (R2 = 0.993) with the 
physician’s reference contouring. This suggests potential use in clinical 
practice for draft contouring and invites its validation as an imaging 
tool in a large scale clinical trial for tumor response assessment. 
Average local tumor response in 2 - 4 months for advanced stage 
NSCLC after chemoradiotherapy was 70%. 
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