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Abstract

Melatonin (N-acetyl-5-methoxytryptamine, MLT) is a naturally occurring 
hormone secreted by the pineal gland. Clinical evidence suggests that MLT 
may have a possible role in the treatment of cancer, where MLT presents 
many oncostatic properties in a wide variety of tumors, utilizing multiple and 
converging mechanisms. It is a potent anti-oxidative agent; its circadian 
rhythm-regulating properties are crucial for orchestrating patterns of hormone 
secretion, the imbalance of which is implicated in a wide range of hormone-
dependent cancers of the reproductive organs. Recent advances in cancer 
treatment can offer therapeutic alternatives that could reduce the severity of 
unwanted side effects. Several observational studies have demonstrated a 
relationship between long-term disruption of circadian rhythm with decreased 
MLT secretion and increased cancer risk, whilst clinical evidence supports the 
possible benefits from MLT on the survival in patients with a range of cancers. 
This review will address some of the multiple anticancer properties of MLT, 
with a particular focus on the mechanisms counteracting tumor occurrence, 
growth, and development. Recent research into the oncostatic effects of MLT 
and the mechanisms of action explaining its efficiency for tumor regulation are 
summarized in this review and suggestions for the therapeutic use of MLT will 
be presented.
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Introduction
All cancers, combined, comprise the second most prevalent 

cause of mortality worldwide. The development of procedures 
aimed at prevention and treatment to control cancer depends on 
the understanding of cancerous cells and the mechanisms through 
which they occur [1]. The National Cancer Institute (NCI) describes 
the most commonly used treatments as chemotherapy, radiation 
therapy, and immunotherapy, although transplantation, laser 
treatment, targeted therapy, and angiogenesis inhibitors are further 
options. Nevertheless, as cancer treatments and therapies advance, 
severe side effects increase [2]. This can be seen in weakness of the 
immune system, coronary heart disease, problems with reproduction, 
hair loss, vomiting, rectal bleeding, bladder irritation, chronic pain, 
and anaemia [2,3].

Melatonin (N-acetyl-5-methoxytryptamine, MLT) is a hormone 
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secreted by the pineal gland with serum levels peaking between 2AM 
and 5AMand has a first distribution lifetime of 2 minutes and a 
second metabolic half-life of 20 minutes [4]. Discovered in the late 
1950s, anticancer effects of MLT research dates back to the 1970s, 
where a possible link between MLT inhibition and breast cancer was 
reported [5]. Further research has since shown this effect is likely the 
product of MLT-regulating tumor growth [4].

MLT has several therapeutic applications, such as antioxidative 
effects, where it has been used as treatment for ionizing radiation in 
Japan following the Fukushima Daiichi incident [6], as well as having 
a positive effect on the immune system, due to lymphocyte number 
control and inducing the production of a number of interleukins 
[7]. More recently, MLT has been shown to contribute to cancer 
prevention and has been trialled as a secondary drug in cancer 
treatment. Recent evidence suggests it can play a role in inhibiting 
the growth of cells in a number of cancers, including breast cancer, 
ovarian cancer, colon cancer, and cervical cancer [8].

Similarly, decreased levels of MLT have been linked to 
several kinds of cancer, neurodegenerative disorders, aging, and 
immunosenescence. For example, breast cancer cell proliferation 
is increased during the daytime when there are low MLT levels, 
compared to during the night when there are increased MLT levels 
and lower cell proliferation [9]. Therefore, factors that reduce night-
time MLT concentrations may be involved in the promotion of 
breast cancer. While many of these studies have used MCF-7 human 
breast cancer cells, similar results have been obtained with human 
Leiomyosarcoma [9] and rat hepatoma cells [10].

MLT studies in mice have established the boundaries of effective 
dosages for cancer patients. With prostate cancer xenograft mice, the 
concentration of 1 mg/1 kg administered as intraperitoneal injections 
resulted in statistically significant plasma levels of MLT (4 nM), which 
was sufficient for an anti-tumor effect [11]. Similarly, injections of 
MLT coupled with reduced light-at-night (LAN) conditions in 
athymic breast cancer mice (MDA-MB-231 cell line) at 40 mg/1 
kg resulted in anti-tumor effects that corresponded with decreased 
rates of cell proliferation and neovascularization [12]. When 
applied to humans, the diagnosed stage of cancer is a key factor for 
recommended dosage; however, even small doses of MLT can have a 
significant impact to the results of the treatment [8]. In patients with 
pancreatic cancer, breast cancer, and progressive solid cancer, when 
MLT is administered alongside chemotherapy, it has been reported 
that there is an increase in sleep quality, reduced chemotherapy-
induced side effects, disease stabilization, and increased survival rate 
[13-15].

The optimal dosage used in clinical trials varies between 20-
40 mg, distributed throughout the day. Administration of MLT 
with tamoxifen has been found to regress metastatic breast cancer, 
and MLT combined with interleukin-2 has been shown to have 
an effect on tumor regression and disease stabilization. This has 
been found in lung carcinoma, liver carcinoma, bowel carcinoma, 
stomach carcinoma, pancreatic carcinoma and breast cancer [16]. 
Chemotherapy is the therapy of choice for many oncologists in the 
treatment of cancer, despite the destructive effect on the human 
organism. When used in conjunction with MLT, however, there is 
evidence of reduced toxicity and unpleasant side effects [17,18].

In this review, MLT-associated anticancer effects and their 
mechanisms will be discussed. Primarily, we focus on the relationship 
of anticancer therapy with antioxidative and anti-estrogenic 
properties, the activation of the immune system, the effect on 
metastasis, and epigenetic actions (Figure 1).

Anti-oxidative properties
Cancer is a proliferative disease where many tumors can develop 

following unrepaired damage to nuclear DNA, which is frequently the 
result of increased concentrations of highly reactive chemicals known 
as free radicals [19]. Free radicals are naturally produced in the body 
during the mitochondrial electron-transport chain step in respiration 
and are, generally, tightly regulated to prevent overproduction. 
Excessive numbers of free radicals can direct tumorigenesis-
associated intracellular signalling [20]. Oxidative damage to lipids 
and proteins is an important physiological dysregulation step as 
the products of such reactions can be potentially carcinogenic: for 
instance, malondialdehyde, a major product of lipid peroxidation, 
is both mutagenic and carcinogenic in animal models [21]. The 
mutagenic properties of free radicals derive from their potential for 
interaction with all parts of the DNA molecule, oxidizing both nitric 
bases and the deoxyribose backbone. Thus, 8-hydroxyguanine (8-
OH-G) formation, as a result of attacks from free hydroxyl radicals, 
is a major indicator of high levels of oxidative stress and considered 
to be one of the most crucial pre-mutagenic molecular lesions [22].

Unlike other antioxidative agents, MLT is able to permeate all 
morphophysiological barriers and reach therapeutically relevant 
concentration levels; it binds to target cells via two types of G protein-
coupled MLT receptors (MR) - MT1 and MT2. Although a variety 
of cells express MT1 and MT2 (ranging from the epithelial lining of 
the gut to the cells of salivary glands, as well as lymphocytes), it is the 
cells of the hypothalamic suprachiasmatic nucleus and hypophyseal 
pars tuberalis that express MT1 at the highest density [23]. These cells 
are targets of MLT on the brain-endocrine axis. MT2 receptors are 
mostly expressed in the inner plexiform layer of the retina, which 
mediates the light stimulation responses in MLT production [24].

There are several antioxidative mechanisms of MLT, including 
single-electron transfers, pro-oxidant and antioxidant enzyme 
regulation, and mitochondrial metabolism control [25-27]. As MLT 
offers a range of both direct and indirect free radical neutralizing 
effects, it protects DNA from the mutagenic oxidative damage they 
inflict [28,29]. The high efficiency of MLT in reducing free radical-
mediated mangling of DNA indicates that the indoleamine must be in 
the nucleus in sufficient concentrations to counteract the damaging 
effects of any radicals produced in the vicinity [30].

As an electron donor in single-electron transfer reactions, 
MLT acts as a direct scavenger of oxygen and nitrogen-based free 
radicals, as well as non-radical reactive oxygen species (ROS), such 
as hydrogen peroxide. The antioxidative mechanisms of MLT involve 
the indole ring binding of •OH (hydroxyl) at carbon 2 of the indole 
ring. For an antioxidant to protect the genome from destruction by 
•OH, the protective agent must straddle the DNA. The most toxic 
and reactive radicals are estimated to travel only a few angstroms 
and have a half-life of only a few nanoseconds before interacting 
with a bystander molecule [30]. The immediate product of pyrrole 
ring cleavage is cyclic 3-hydroxymelatonin. In addition, N1-acetyl-
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5-methoxykynuramine (AMK) and N(1)-acetyl-N(2)-formyl-5-
methoxykynuramine (AFMK), utilize similar mechanisms to achieve 
antioxidative effects [31]. AMK, a protective metabolite formed 
during electron donation, is particularly relevant for mitochondrial 
metabolism as it acts to reduce electron leakage by maintaining 
membrane potential and aiding electron flux in the transport chain 
[25].

MLT acts to downregulate prooxidant enzymes such as 
lipoxygenases and nitric oxide synthases (NOS), which increase the 
levels of oxidative stress via increasing the production of ROS/RNS 
[25]. NOS produces nitrogen oxide (NO), a free radical capable of 
driving peroxynitrite synthesis due to the reactions between NO and 
the superoxide anion. Peroxynitrite is highly reactive and contributes 
to both lipid and protein peroxidation [26]. Lipoxygenases catalyse 
reactions of lipid peroxidation, resulting in enzyme-specific 
hydroperoxides acting as biomediators in signalling pathways. 
However, if lipid oxidation occurs at pathological levels, oxidative 
damage to low-density lipoproteins (LDL) is accumulated with 
concurrent production of ROS/RNS [32]. By directly downregulating 
the activity of both of these enzymes, MLT exercises its antioxidative 
properties. The exact mechanisms of downregulation are tissue 
specific; MLT does not suppress normal physiological activity of 
prooxidant enzymes, which makes it a preferential therapeutic agent. 
For example, NOS activity resulting in basal negligible NO radical 
production is crucial for cellular communication in neuronal and 
immunological networks. Moreover, the activities of lipoxygenases 
5, 12 via possible interactions with retinoid acid receptors (RARs), 
which are related to oxidant generation, have not been substantially 
investigated [33].

A mechanism of oxidative stress regulation by MLT is utilizing 
the NF-кB pathway: in the absence of oxidative stress, NF-кB is found 
in the nucleus in the form bound to the inhibitory subunit I-кB. 
When exposed to higher levels of ROS, I-кB phosphorylation triggers 
NF-кB translocation to the nucleus, which results in binding to the 
appropriate response elements of the genes encoding antioxidative 
enzymes, increasing their transcription levels [34]. I-кB activity is 
upregulated by the activation of ROR-response elements within the 
I-кB promoter because of the nuclear transcription RORα. MLT 
decreases RORα activity via an indirect relationship between the 
MT1 receptor and the RAR-related orphan receptor-α (ROR) [34]. 
The transcriptional activation of RORα by calmodulin-dependent 
kinases (CaM) increases the transcription of I-кB; thus, as MLT 
directly binds calmodulin, it prevents CaM activity allowing MLT to 
exercise its effects on antioxidative enzyme activity via receptor and 
non-receptor-mediated NF-кB-related pathways [34].

Alongside preventing the destruction of the genome, there is 
substantial evidence to suggest that MLT may also aid in repairing 
mutations [35]. The implicated mechanisms of DNA damage-
responsive pathways make use of base-excision repair (BER) [35,36]. 
However, as MLT does not directly alter the activity of three key 
glycosylases involved in BER, it is capable of reducing the repair time 
by 50% - one possible mechanism to achieve this is via acting on other 
BER-associated enzymes or their cofactors [26].

Damage-prevention and repair-enhancement properties present 
in MLT have been associated with limiting tumor cell initiation and 

cancer frequency. The antioxidative properties of MLT are crucial for 
reduction in oxidative stress, which increases with cancer progression 
as the result of radiation treatment - this greatly increases the quality 
of life in cancer patients and enhances tumor control by allowing the 
use of a higher dose of radiation coupled with MLT therapy [37].

Anti-estrogenic properties and LA uptake reduction
Mammary breast cancers are linked to the levels of estrogen 

available either in its free circulating form or in the estrogen produced 
and accumulated by breast tissue [38]. The mechanisms for this link 
are argued to involve the various types of estrogens and metabolites 
acting as mutagens; in addition, the stimulatory effects of estrogen 
on cellular proliferation via ER (estrogen receptors alpha) drive the 
proliferation of mutations [39].

MLT orchestrates the seasonal reproduction period, and puberty 
depends on pineal gland function [40]. The lateness of appearance 
of secondary sexual characteristics is linked to high concentrations 
of MLT, whereas low concentrations may prevent puberty. These 
dysfunctions are commonly associated with the pineal gland 
damage and tumors [41]. The hypothalamus-pituitary-pineal 
gland neuroendocrine pathway illustrates that the concentration 
of the luteinizing hormone (LH), the follicle-stimulating hormone 
(FSH), testosterone, gonadotropin, and prolactin are linked to 
photoperiodicity [42-44]. Additionally, LH, FSH, and gonadotropin-
releasing hormone synthesis cycles have 24-hour periods. MLT 
exercises direct effects on the levels of estrogen by acting on the 
ovaries via binding sites in human granulosa-luteal cells to modulate 
steroidogenesis in situ [45].

The anti-estrogenic properties of MLT depend on its ability to 
decrease the expression of ER and to inhibit the binding of the E2-
ER complex to the estrogen response element (ERE) on DNA. These 
effects are exerted through MLT binding specifically to MT1 receptors 
[46,47]. In MCF-7 human breast cancer cells, the activation of MT1 
receptors (but not MT2) enhances the response to the anti-estrogenic 
effects of MLT. MT1 receptors are located in the caveolae of MCF-7 
cells [48]. Binding MLT to both MT1/MT2 activates various members 
of the Gi protein family, resulting in MAPK pathway modulation 
with effects on MEKs/ERKs and cAMP production downregulation. 
This causes modification of other downstream nuclear/cytosolic 
factors and drives cell differentiation, making cells less susceptible to 
malignancy, and reducing cell proliferation [49]. Both oncostatic and 
anti-proliferative effects are achieved via initiating signalling cascades 
downstream of MLT- MT1/MT2 receptor complexes.

A further mechanism whereby MLT decreases the growth of 
hormone-dependent cancers include its ability to inhibit aromatase, 
an enzyme which metabolizes androgen precursors to estrogens, as 
well as its action at the level of the ER, specifically ER [50]. This action 
reduces the stimulatory effects of endogenous estrogens on mammary 
cancer cell proliferation. Agents that inhibit aromatase are referred to 
as selective estrogen enzyme modulators (SEEM), while the latter are 
identified as selective estrogen receptor modulators (SERM). Thus, 
MLT-estrogen interactions involve direct effects and indirect effects 
when acting as SERM and SEEM. These anti-estrogenic effects of 
MLT limit the cell proliferation of hormone-dependent mammary 
cancer [39].
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Inhibition of linoleic acid (LA) uptake by MLT is regarded as an 
antiproliferative mechanism. In addition to estrogen interactions, 
MLT acts to reduce the uptake of LA, an important initiating factor 
for the cellular cascades implicated in hormone-dependent breast 
cancers [51]. LA is a major essential fatty acid and is taken up into 
cells by specific fatty acid transporters. Interaction between MLT 
with MT1 and MT2 leads to the inhibition of adenylyl cyclase and 
reduction in the levels of cyclic AMP (cAMP), limiting the uptake 
of LA [51]. When circulating MLT levels are low, LA readily enters 
breast cancer cells where it is oxidized to 13-hydroxyoctadecadienoic 
acid (13-HODE), a mitogenic signaling molecule, by 15-lipoxygenase 
(15-LOX-1). It leads to the activation of the MEK–ERK1/2 pathway 
that promotes cell proliferation and tumor growth. When blood 
MLT levels are high, the indole acts via the membrane receptors to 
close the fatty acid transporter, limit LA uptake and shut down cell 
proliferation [51].

Immune system activation 
The mechanisms in which MLT enhances the immune system is 

not fully understood, however there is ample evidence suggesting that 
the immune system plays at least three roles in tumor prevention: 
prevention of the formation of virus-induced tumors by eliminating 
viral infections, removal of pathogens to prevent inflammation, and 
identification and destruction of tumor cells that express tumor-
specific antigens [52]. The existence of specific receptors for MLT in 
lymphoid cells confirms this effect in regulating and reinforcing the 
immune system response [8].

Alongside the pineal gland, MLT is synthesized in lymphoid 
organs such as the bone marrow, lymphocytes, and thymus, which 
are involved in the regulation of both innate and adaptive immune 
responses [53-55]. Innate immunity is the nonspecific first line 
of defense from microbes and transformed cells. It consists of 
macrophages, mast cells, dendritic cells (DCs), natural killer (NK) 
cells, etc. In contrast, adaptive immunity is antigen specific and is 
involved in the prevention and elimination of pathogens. There are 
two classes of adaptive immunity: cellular and humoral immunity, 
where cellular immunity uses T-cells that recognize cells displaying 
aberrant major histocompatibility complexes (MHCs), and humoral 
immunity uses B-cells that recognize pathogens or antigens found in 
the blood or lymph. The use of MLT has been shown to stimulate 
both innate and adaptive immunity [56].

MLT influences the immune system via MLT receptors, 
where both membrane and nuclear receptors have been found on 
leukocytes. Membrane and nuclear receptors allow MLT to induce 
cytokine production, modulate lymphocytes, restore impaired 
activity of T-helper (Th) cells in immuno depressed cells, promote 
T-lymphocyte proliferation, inhibit apoptosis of precursor B-cells 
in the bone marrow, and protect CD4+ T-cells from apoptosis. 
Furthermore, MLT prevents apoptosis of T-cell precursors in the 
thymus and it acts on T-cells throughout their development [56-60].

Experiments that inhibit MLT synthesis or secretion, including 
functional or surgical pinealectomy, show changes in the immune 
system, where production of cytokines is reduced [61]. Additionally, 
both in vitro and in vivo treatment with MLT has confirmed an 
enhanced immunological effect. Lymphocytes synthesize and secrete 
a substantial amount of MLT, further demonstrating the involvement 

of MLT in the regulation of the immune system by acting as an 
intracrine, autocrine and paracrine molecule [55].

MLT is involved in the proliferation and maturation stages 
of monocytes, granulocytes and NK cells. This is observed with 
the enhanced production of progenitor cells of macrophages and 
granulocytes [62] and with the activation of monocytes leading to 
the secretion of IL-1-inducing cytotoxicity against tumor cells [63]. 
NK cells have the ability to recognize transformed cells and destroy 
them by inducing apoptosis and release interferon (IFN)- that leads 
to maturation of DCs, the antigen presenting cells, to promote the 
production of the cytotoxic T-cell CD8+ anti-tumor response [56]. 
MLT enhances the lytic function of NK cells, however, it is not fully 
understood whether the effect is via direct interaction of MLT and 
receptors on the surface of NK cells, or indirectly via increased IL-2 
levels stimulated by MLT to enhance NK cell function [64-66].

MLT’s ability to stimulate the immune system is linked to its 
capacity to enhance cytokine production together with antioxidant 
and anti-apoptotic effects. For instance, when peripheral blood 
mononuclear cells are cultured, MLT administration increased IL-2, 
IL-6 and IFN- production [67]. Moreover, long-term administration 
of MLT can increase the number of NK cells by enhancing the 
production of cytokines IL-2, IL-6, IL-12 and IFN- by T-helper 
cells containing MLT receptors [68-71]. In addition, MLT may 
enhance the immune response by increasing phagocytosis and 
antigen presentation [62], as following MLT administration, the 
antigen presentation of splenic macrophages to T-cells is enhanced 
and it is accompanied with an increase in MHC class II molecule 
expression and IL-1 and TNF- production [72]. MLT is thought to 
regulate immune function by acting on the immune-opioid network, 
by affecting the G protein-cAMP signal pathway and by regulating 
intracellular glutathione levels [73].

MLT stimulates the production of NK cells, monocytes and 
leukocytes, as well as increasing the production of IL-2, IL-6, IL-
10, IL-12 and IFN-γ by the mononucleate cells, promoting a Th-1 
lymphocyte response [8]. As MLT binds to membrane and nuclear 
receptors in Th cells, as well as stimulating the monocytes resulting 
in the production of the aforementioned cytokines, the immune 
response is upregulated [73]. Consequently, MLT is considered as an 
immune-enhancing agent.

Inhibition of tumor advancement: metastasis inhibition, 
anti-proliferative and pro-apoptotic activity

Metastasis is the process that involves the movement of neoplastic 
cells from the point of initial tumor formation to other tissues, organs 
or anatomical sites, and it is the primary cause of death in cancer 
patients. In vitro doses of MLT at 1 nM has been shown to decrease 
the invasiveness of 17-beta-estradiol (E2) induced MCF-7 human 
breast cancer cells, and it is correlated with an increase in expression 
of the cell-surface adhesion molecules E-cadherin and 1-integrin 
[74]. The anti-metastatic effect of MLT has been reproduced using 
three different clones of MCF-7 cells, which were treated with 0.1 
or 1 nM of MLT. The anti-metastatic response was enhanced when 
MT1 was overexpressed, but reduced when MT1/MT2 receptor 
antagonist luzindole was added, suggesting that MLT exerts its effect 
on metastasis via specific membrane receptors [75]. Moreover, cancer 
patients with brain metastases, when treated with 20 mg of MLT per 
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day, together with supportive care, have shown an increased survival 
rate at 1 year compared to patients treated with supportive care alone 
[76].

Along with its anti-metastatic effects, MLT demonstrates 
anti-proliferative and pro-apoptotic activities in cancer cells as 
opposed to normal cells. The mechanisms of MLT in inhibiting cell 
proliferation vary across cancer cell types, including modulation of 
cell cycle duration: it promotes cell cycle arrest and enhances the 
prolongation of cell cycle duration in tumor cells, including in MCF-
7 human breast cancer cells, human lymphoid malignancy cell lines 
(Burkitt’s lymphoma, follicular B-cell lymphoma, and diffuse large 
B-cell lymphoma), the HepG2 hepatocarcinoma cell line, human 
osteosarcoma cell line MG-63, and HL-60 human myeloid cells, 
by expanding the G1 phase and delaying the entrance into S phase 
[36,77,78].

Expansion of the G1 phase reduces cell proliferation and allows 
entry of cells into G0, giving cells an opportunity to differentiate. 
Differentiated tumor cells are less aggressive and carry a better 
prognosis as expansion of the G1 phase allows the repair of DNA 
damage. Moreover, MLT administration has reduced the cytokinesis 
level of S-91 melanoma cells both in vitro and in vivo [79]. This anti-
proliferative effect is cytostatic rather than a cytotoxic action as it 
is involved in modulating the cell cycle length. It is suggested that 
the inhibitory effect of MLT in the human osteosarcoma cell line 
MG-63 is due to a reduction in levels of cyclin B1, cyclin D1, cyclin-
dependent kinase (CDK)1, and CDK4, each of which is important 
in cell cycle regulation [36]. MLT administration to human HepG2 
hepatocarcinoma cells induced increased levels of p53 and its 
downstream effector p21, which is a potent inhibitor of cell cycle 
kinases causing the cell cycle arrest [80].

Evidence for MLT’s direct receptor-mediated inhibitory effect on 
proliferation of cancer cells has been demonstrated when physiological 
and pharmaceutical doses of MLT inhibit the proliferation of human 
Choriocarcinoma JAr and JEG-3 cell lines: malignant tumor cells that 
arise from trophoblastic cells in the uterus [81,82]. The inhibition is 
correlated with the expression of the MT2 receptor but not the MT1 
receptor. In contrast, the MT1 receptor plays a significant role in 
mediating the anti-proliferative effect of MLT in breast cancer [48]. 
Although G1/S transition delay has been observed in JAr cells, it is 
not the case in JEG-3 cells, suggesting the anti-proliferative effects 
of MLT are direct. Additionally, in vivo administration of MLT 
increased inhibition of JAr and JEG-3 xenograft tumors in nude mice 
and improved the survival of mice with choriocarcinoma, confirming 
the results of in vitro experiments [81].

MLT administration leads to cell cycle arrest in G2/M and 
increases the number of cells in G2/M of the cell cycle related to 
apoptosis. Further, MLT has been shown to inhibit apoptosis in 
normal cells, whereas it promotes apoptosis in tumor cells. In 
tumor cells, apoptosis occurs in high concentrations of MLT [77]. 
Experimental evidence has shown pro-apoptotic action of MLT on 
different cancer cell types both in vitro and in vivo, especially the 
pro-apoptotic effect of MLT on hematological cancers; apoptotic 
cell death was observed in Burkitt’s lymphoma [82], acute myeloid 
leukemia [83], and acute lymphoid leukemia (RHE) cell lines [84]. 
Moreover, after treatment with MLT, the induction of apoptosis was 

present in HepG2 liver cancer cells [80], Ewing’s sarcoma cells [84] 
and rat pancreatic cancer cell lines [85]. MLT-induced apoptosis 
occurs via two pathways: the extrinsic and the intrinsic pathways that 
can act alone or in combination. The former leads to activation of 
caspase 8 and the latter leads to activation of caspase 9, both of which 
are involved in the activation of executioner caspases (3, 6 and 7) that 
further orchestrate the apoptotic pathways [86].

Anti-angiogenesis
Angiogenesis is the process of new blood vessel formation, and it is 

crucial for processes such as embryonic development, wound healing, 
and carcinogenesis. In the absence of vascular support, tumors 
may become necrotic or even apoptotic [87]. Rapidly proliferating 
cancer cells require an extensive network of blood vessels to ensure 
the constant supply of oxygen and nutrients. As the tumor mass 
increases, cancer cells become oxygen-deprived, thereby triggering 
hypoxia responses [87]. Such responses involve cascades activated 
by vascular endothelial growth factors (VEGFs) and the stromal-
cell derived factor 1, resulting in growth and migration stimulation 
of endothelial cells, as well as recruitment of specific pro-angiogenic 
cells from the bone marrow [12]. As the VEGF family is present in 
both cancerous tissue and the adjacent stroma, they play an important 
role in neovascularization; tumor cells feed on the new blood vessels 
by producing VEGF and then secreting it into the surrounding tissue. 
Thus, processes of angiogenesis and neovascularization present 
logical targets for anticancer strategies [12,87].

Neovascularization, including tumor angiogenesis, is a four-
step process: the tissue basement membrane is injured locally and 
there is immediate destruction and hypoxia, there is a migration of 
endothelial cells activated by angiogenic factors, endothelial cells 
proliferate and stabilize, and angiogenic factors continue to influence 
the angiogenic process [87]. Mutations in signalling pathways 
can promote tumor angiogenesis, for example, the PI3K/AKT 
(phosphatidylinositol-3-kinase) signalling pathway is important for 
regulating vasculature and angiogenesis processes. PI3K activation 
regulates the VEGF-A expression level in different types of cancer 
cells through HIF-1 (hypoxia-induced factor-1), ERK1/2, and NF-кB 
activation to induce tumor angiogenesis [88]. The genetic alterations 
in the PI3K signalling molecules activate the PI3K signalling pathway 
involved in many types of human cancers, including thyroid, ovarian, 
colon, and breast cancers [88].

As MLT contains anti-angiogenic properties in various cell lines 
of cancer, including MDA-MB231 and PANC-1, endogenous VEGF 
suppression can be achieved and effectively maintained [12,89]. Both 
lines have provided positive results indicating the effectiveness of MLT 
as an anti-angiogenic treatment both in vitro and in vivo. Similarly, 
nude mice were grafted with foreign MDA-MB231 cell lines and 
demonstrated reduced tumor growth with decreased micro-capillary 
density in the tumor mass following daily MLT injected peritoneally 
[12]. Human studies of anti-angiogenic properties of MLT revealed 
positive results for both progressive-advanced and stable-advanced 
cancers, with stable-metastatic cancer patients showing a robust 
response correlated with the decline of serum-circulating VEGF 
[90]. Yet, MLT has the opposite effect of angiogenesis promotion 
due to increasing monocyte, cytokine and fibroblast proliferation 
rates in healing tissues, as observed in Wistar-albino rats [91]. This 
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antagonistic property of MLT in healthy cells makes its use in cancer 
therapy particularly attractive as only tumor cells will be the target of 
anti-angiogenic activity.

Epigenetic actions
Epigenetic changes are highly affected by the environment, and 

when in association with internal harmful effects, can induce nitro-
oxidative stress in cells which can lead to several metabolic disorders, 
aging, and cancer [6,92]. Excess levels of folate activate methylation 
enzymes, which has been hypothesized to be crucial in the 
development of colon cancer [93]. The epigenotype is more flexible 
than the genotype; therefore, it is believed that epigenetic changes can 
play a substantial role in many human diseases. The development and 
progression of cancer implicates both epigenetic and genetic changes 
leading to the alteration of gene expression and cell phenotype [94].

The two molecular mechanisms involved in epigenetic 
regulation of gene expression are histone modification and DNA 
methylation. These mechanisms require several enzymes to assist in 
the process, including DNA methyltransferases (DNMTs), histone 
acetyltransferase (HATs) and histone deacetylases (HDACs) [95]. 
Multiple studies have provided sufficient evidence that increased 
activity of HATs and HDACs is associated with aberrant gene 
expression, which in turn leads to breast cancer [96]. The genes 
involved in metastasis (TIMPs) and limitless replicative potential 
(such as Cyclin D, p16, BRCA1, etc.) are methylated in breast cancer 
cells, whilst in non-carcinogenic cells they remain unmethylated [97].

Sirtuins are critical in cancer development as they play a dual 
role. For example, SIRT1 has been shown to activate stress defense 
and DNA repair mechanisms, thus allowing the preservation of the 
genomic integrity, yet overexpression can enhance tumor growth and 
promote cell survival in response to stress and drug resistance [94]. 
Strong inhibitors of sirtuins, such as salermidine, are pro-apoptotic 
due to the reactivation of suppressed genes [94], and recent findings 
suggest that increased levels of sirtuin lead to an increased number of 
different age-related tumors, which correlates with a reduced level of 
MLT production [98].

Epigenetic regulations can be controlled by MLT’s ability to turn 
genes on or off. For example, MLT can regulate transcription factors 
modulated by nitro-oxidative and inflammatory conditions. Pathways 
controlled by NF-ĸB and the activator protein-1 (AP-1) family 
directly activates pro-inflammatory cytokines and mediators like 
TNF-, interleukins, cyclooxygenase-2 (COX-2), cytokine-inducible 
nitric oxide synthase (iNOS), and matrix metalloproteinases (MMPs), 
which leads to inflammation [99]. These active transcription factors 
induce epigenetic processes by changing chromatin structure, either 
by acetylation of histones or methylation of DNA. Several studies 
have shown that MLT selectively inhibits iNOS and COX-2 [100] and 
MMPs [101], which a result of the suppression of NF-ĸB is binding 
[102]. The suppression of the NF-ĸB gene happens via recruitment of 
HDAC to its promoter region with MLT’s action [103]. MLT inhibits 
p52 acetylation and binds to DNA, and therefore suppresses the 
expression of macrophage COX-2 and iNOS synthase [104].

Nuclear receptors (NR) are another class of protein that can 
inhibit or activate gene expression and regulate transcription, 
including estrogen receptors, retinoid acid receptors, peroxisome 

proliferators-activated receptors (PPARs), retinoid X receptor (RXR), 
and glucocorticoid (GR). Enzymes that directly interact with NRs 
are co-regulators and can be either co-repressors or co-activators 
[105]. mRNA transcripts of nuclear MLT receptors (NMR) have 
been detected via using in situ hybridization of neuronal tissue and 
the pineal gland, which suggests that there is a genomic relationship 
between RZR/ROR receptors and MLT. These receptors are highly 
expressed in almost all normal tissues and are present in tumor 
cells such as breast, prostate and colon cancer. MLT modulates 
the transcriptional activity of ERa, GR and RAR receptors [105]. 
Similarly, when MCF-7 cells are treated with 1 mM and 100 mM 
of MLT, MLT downregulates EGR3 and POU4F2/Brn-3b genes via 
methylation, which are known tumor enhancers, and upregulates 
through methylation of GPC3 gene promoters, a known tumor 
suppressor [106], thus demonstrating that MLT can epigenetically 
affect cancer cells by playing a role in decreasing the development 
of tumors.

Conclusion
Evidence has been presented which suggests that MLT modulates 

estrogen and androgen activity, scavenges free radicals, inhibits 
cancer cell growth and proliferation, acts as an immunomodulator, 
and inhibits angiogenesis, whilst protecting from the precursors of 
hematopoiesis. Through its SERM and SEEM modulation, MLT 
inhibits the growth of androgen-sensitive prostate cancer cells, and, 
in certain cancer cell types, inhibits the uptake of linoleic acid, which 
prevents the formation of its mitogenic metabolite and inhibits the 
formation of endothelin-1. Additionally, MLT has been demonstrated 
to have radioprotective effects and scavenges free radicals in part 
through its stimulation of glutathione production.

Further evidence suggests that MLT may exert direct apoptotic 
effects by blocking cell cycle progression from the G phase to the S 
phase and by increasing gene expression in p53 and p21. Regarding 
the immune system, MLT increases the immunosurveillance 
system through stimulation of activity in lymphocytes, monocytes/
macrophages, and natural killer cells. Lymphoid cells have also been 
shown to synthesize MLT, which regulates the immune system and it 
has been shown to increase the production of a number of cytokines. 
With the exception of free radical scavenging, these activities are 
thought to be mediated through MT1 and MT2 receptors. The 
nuclear binding sites for MLT have been identified in the majority 
of tissue types, and it is thought that MLT can further affect genomic 
activity at these sites.

MLT has been demonstrated to be an effective non-toxic molecule 
in both animal and human studies. MLT’s versatility as an oncostatic 
agent is the result of its involvement in at least 6 distinct mechanisms 
at cellular and organismal levels. These effects are outlined in detail 
in Figure 1. All these properties of MLT suggest conducting further 
clinical trials of MLT and the use of MLT on cancer treatment.
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