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hypoxia and acidosis [13]. Tumors initiate a vascular supply through 
secreting angiogenic factors, mainly Vascular Endothelial Growth 
Factor (VEGF) [14]. Despite being of critical value in controlling the 
physiological processes of angiogenesis and vascular permeability 
[15], when continuously over-expressed in tumor tissues, VEGF 
induces accelerated and defective angiogenesis wherein vessels are 
immature, leaky, tortious and characterized by defective anatomy 
and physiology [16]. These structural abnormalities contribute 
to spatial and temporal heterogeneity in tumor blood function, 
resulting in poorly perfused and subsequently hypoxic tumor 
microenvironment. Targeting tumor vessels via. Anti-VEGF/VEGFR 
drugs have not been effective as a cure since impeding tumor blood 
supply deprives the tumor of oxygen, leading to hypoxia and acidosis 
that, in turn, can promote tumor growth, abnormal angiogenesis, 
and metastasis and also compromise the cytotoxic functions of 
immune cells that infiltrate tumors [17]. In addition, reduced tumor 
vascularity is a main contributor to therapeutic resistance in cancer 
since it interferes with the delivery of anti-cancer agents to the tumor 
targeted by chemotherapy or minimizes the production of Reactive 
Oxygen Species (ROS) in the tumor area, which is essential for 
radiation therapy induced cell killing [18,19]. Radiation-induced 
effects on cancer are brought about by inducing ROS production, 
DNA damage and apoptosis [20]. However, poor vascularization 
and hypoxia that characterize solid tumors induce resistance to 
radiotherapy and are positively correlated with more invasion and 
metastasis. This is achieved by two mechanisms: first, through the 
lack of O2 and hence the interference with radiation-induced ROS 
production. Second, via. the hypoxia inducible factor-1α (HIF-1α) 
that provokes adaptive intracellular responses that, in turn, facilitate 
cell proliferation, interfere with apoptosis, provide protection from 
cell demise and ultimately rendering tumors radioresistant [21]. 
As a result, increasing the chemotherapeutic doses or strategies 
to intensify radiotherapy have been employed to increase the 
treatment efficacy. However, these procedures can potentially lead 
to a higher risk of serious side effects. To raise the therapeutic ratio 
(the ratio between the desirable cytotoxic effects and normal tissue 
complications), new strategies to enhance chemo and radiosensitivity 
of cancer are needed. To this end, we need to develop methods to 
improve tumor blood perfusion and normalize vascular development 
in order to increase tumor vulnerability to anti-cancer therapy as a 
better alternative to starving a tumor of its blood supply, which is not 
curative. Furthermore, one needs to emphasize that antiangiogenic 
drugs are not without side effects. Indeed, they have been reported to 
induce a myriad of toxic effects such as hypertension, hemorrhage, 
thromboembolism, proteinuria, malaise, fatigue, biochemical 
hypothyroidism, and cardiac failure, all are related to the non-specific 
action of antiangiogenic drugs that affects both normal and cancer 
tissues [1].

Tumor vasculature is functionally different than normal tissues’ 
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It is well established that tumors are unable to grow beyond 

certain size (1-2 mm) unless they acquire their own blood supply 
via. angiogenesis. In addition, angiogenesis helps tumors to invade 
adjacent tissues and metastasize to distant sites. Therefore, it has 
been postulated that interfering with the blood supply using anti-
angiogenic therapies will destroy the tumor. However, there is an 
emerging alternative concept that depriving the tumor of its blood 
supply interferes with the delivery of chemotherapeutic agents 
to the tumor and creates unfavorable hypoxic environment that 
compromises the action of radiotherapy. This concept was supported 
by the modest responses to anti-angiogenic therapies in clinical trials 
and the lack of any impact on patient’s survival when antiangiogenic 
drugs are administered as single agents [1]. Although, Hurwitz, et al 
[2] have shown that combining the antiangiogenic drug, Bevacizumab 
with chemotherapy significantly improved survival among metastatic 
colorectal cancer patients. Still, other studies demonstrated 
reductions in tumor concentrations of chemotherapy or effectiveness 
of radiotherapy when antiangiogenic drugs were co-administered 
[3-5]. Even when antiangiogenic drugs yielded significant effects 
on the growth of some tumors such as renal cell carcinoma, cervical 
cancer and ovarian cancer, they failed to demonstrate significant 
improvements in patients’ survival [6,7]. Furthermore, complete 
resistance to antiangiogenic therapies have been reported for prostate 
and pancreatic adenocarcinoma and melanoma [8,9]. In order to 
explain this inconsistency, further research is needed for better 
understanding of the underlying cellular and molecular mechanisms 
of tumor vascularization and its interaction with cancer therapies in 
different tumor beds.

Tumors’ blood vessels are often larger and more conspicuous than 
those of normal tissues [10]. However, tumors tend to actually have 
less blood supply than normal tissues because tumor blood vessels 
are fragile, leaky, morphologically abnormal and malfunctioning 
[11,12]. While the normal vasculature consists of evenly spaced, 
well-differentiated arteries, arterioles, capillaries, venules and veins, 
the tumor vasculature is heterogeneous, unevenly distributed 
and chaotic with a tortious irregular course that leads to zones of 
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blood vessels. It is not simply the copious blood perfusion that induces 
tumor growth. Rather, enhanced tumor growth occurs in response to 
nurturing molecules produced by tumor-associated endothelial cells 
such as the unbalanced production of VEGF(s). However, due to the 
non-specificity of the current anti-VEFGF/VEGFR drugs and the 
treatment-resistant hypoxic environment subsequent to depriving 
the tumor of its blood supply, discovering new therapeutic targets 
in the tumor-associated endothelial cells is warranted. Recently, 
Notch receptor and its ligand Jagged-1 have been identified as key 
regulators of tumor angiogenesis. Studies on blocking notch and 
Jagged-1 signaling demonstrated tumor growth inhibition however 
this was accompanied by an increase in the number of non-functional 
vessels and poor tumor perfusion [22]. Thus, it is conceivable that 
ideal targets would be molecules or growth factors that are produced 
only by tumor-associated endothelial cells that can be blocked in 
order to normalize tumor vasculature without obstructing tumor 
blood supply, altering oxygen delivery or sheltering the tumor from 
chemotherapy.

In addition to over expressing tumor growth promoting factors, 
tumor-associated endothelial cells lack specific protein complexes 
that connect endothelial cells together such as the vascular endothelial 
adhesion molecule, VE-cadherin [23]. Alteration in these complexes 
causes leakage of fluid and molecules out of the vessels resulting 
in edema and hampers the delivery of cancer therapy to the tumor 
tissue which, in turn, contributes to cancer therapeutic resistance. 
Therefore, restoring VE-cadherin or other endothelial cell adhesion 
molecules in tumor-associated blood vessels could be a promising 
target for vascular normalization in cancer therapies. Besides direct 
targeting of angiogenic factors, an alternative recent approach 
involves modification of epigenetic processes. An emerging evidence 
supports a role of histone deacetylation and DNA methylation in the 
regulation of angiogenesis. Accordingly, several Histone Deacetylase 
(HDAC) and DNA Methyltransferase (DNMT) inhibitors are being 
examined for their anti-angiogenic properties [24]. Also, a new 
group of microRNAs (miRs) involved in cancer-related aberrant 
angiogenesis, hypoxia and cancer metastasis has been recently 
discovered. These miRs are referred to as angiomiRs and hypoxamiRs 
and they stand as promising new therapeutic targets in cancer [25].

A new venue that we believe is worth exploration is physical 
exercise as a non-pharmacological novel adjuvant therapy to 
normalize tumor blood vessels, restore their normal structure and 
function and subsequently increase tumor sensitivity to cancer 
therapy. The foundation of this assumption comes from the strong 
epidemiological and experimental evidence supporting the role of 
exercise in improving blood flow and tissue perfusion in normal 
and post-ischemic tissues [26-29]. Exercise elevates the intravascular 
shear stress which in turn activates endothelial cell production of 
vasodilators [30]. A number of vasodilators have been shown to 
increase in response to exercise however, two compounds stand 
out as central mediators of exercise action: Nitric Oxide (NO) 
and Prostacyclin [31]. Exercise-induced vasodilation increases 
tissue hyperemia and oxygenation which subsequently normalizes 
the microenvironment and induces the formation of new well-
developed, normal-functioning blood vessels. This pro-angiogenic 
effect of exercise has been proposed to be mediated through several 
angiogenic factors such as VEGF, angiopoietin 1 and 2, PPAR gamma 

coactivator-1alpha, cAMP- and cGMP-independent smooth muscle 
relaxation [31-33]. Exercise has been shown to restore the balance 
between pro- and antiangiogenic factors which promotes a shift 
towards normalized tumor microenvironment.

Intriguingly, emerging data indicate that aerobic exercise 
improves tumor perfusion and cancer therapy efficacy and reduces 
tumor metastasis in preclinical prostate and breast cancer models 
[34-36]. In a prospective cohort of 571 men with prostate cancer, Van 
Blarigan, et al demonstrated that physical activity normalized tumor 
vessel density, size and shape [37]. Despite this progress in unraveling 
the effect of exercise in improving cancer perfusion and treatment 
sensitivity, we do not see exercise being recommended for cancer 
patients who are more likely to have complications that discourage 
them from exercising. Probably if more clinical trials succeeded to 
prove that exercise synergizes with cancer therapy, there would 
be a strong impetus for patients to exercise and for oncologists to 
recommend exercise for their patients.

In conclusion, it is imperative to understand the underpinnings 
of tumor vascularity and microenvironment. Tumor blood vessels, 
albeit malfunctioning, they are the portal to deliver drugs to cancer 
tissues thus, instead of targeting tumor vessels for elimination, 
functional enhancement might be tried instead. Identifying novel 
therapeutic targets and interventions to normalize tumor vascular 
bed should make it possible to enhance the efficacy of cancer chemo 
and radiotherapies.
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