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Abstract

Mechanism of atherosclerotic carotid stenosis has not been fully elucidated. 
Intraplaque hemorrhage is supposed to play an important role in the progression 
of carotid stenosis and ischemic event. Expression of Vascular Endothelial 
Growth Factor (VEGF) is related to atherosclerosis. The purpose of this study 
is to elucidate the role of VEGF in atherosclerotic carotid plaques. We analyzed 
the expression of VEGF in atherosclerotic carotid plaques obtained at carotid 
endarterectomy for symptomatic carotid stenosis. Both Immunohistochemical 
and immunoblotting methods using anti-VEGF antibody were employed. In 
addition, the correlation between VEGF expression and plaque pathology 
was examined. Our study showed a high level of VEGF immunoreactivity in 
carotid plaques with distinct expression of VEGF in foam cells infiltrating 
carotid plaques. The statistical analyses revealed that the numbers of VEGF 
expressive cells per unit area in the intimal deep portions of carotid plaques 
were significantly larger than those in the intimal superficial portions (P<0.01). In 
addition, it was suggested that the VEGF expression was related to intraplaque 
hemorrhage. In conclusions, VEGF expression is induced in the deep portion of 
the atherosclerotic carotid plaques. It may play an important role in induction of 
intraplaque hemorrhage causing ischemic stroke

Keywords: Vascular endothelial growth factor; Atherosclerotic carotid 
plaque; Intraplaque hemorrhage; Ischemic stroke

hemorrhage was found in 46 cases (68.7%) of atherosclerotic carotid 
plaques. The mean age of patients with carotid stenosis was 63.4 
years, and male/female was 58/9. All samples of sclerotic carotid 
plaques were fixed with 20% formalin solution and provided for 
the Immunohistochemical examination which was performed by 
the standard avidin-biotin complex method. The employed primary 
antibody as a mouse monoclonal antibody, R11 (Immuno-biological 
Laboratories Co. Ltd, Fujioka, Japan), against recombinant human 
VEGF165. After sufficient deparaffinization, these sections were treated 
with 0.3% H2O2 in methanol for 15 minutes to block endogenous 
peroxidase activity. Nonspecific binding was blocked by treatment 
with normal horse serum (1:20) for 45 minutes. The sections were 
next incubated with the primary antibody, R11(1:100) for 60 minutes 
at room temperature. After sufficient washing in 0.01 M Phosphate-
Buffered Solution (PBS), sections were incubated with biotinylated 
rabbit anti-mouse IgG antibody (1: 200, Vector Laboratories, Inc., 
CA) for 30 minutes. After washing in 0.01 M PBS, the sections were 
incubated with avidin-biotinylated horseradish peroxidase complex 
(1:100, Vector Laboratories, Inc., Burlingame, CA) and developed in 
0.03% H2O2 and 0.1% diaminobenzidine tetra hydrochloride (DAB, 
Wako Pure Chemical Industries, Ltd, Tokyo). Control stain was 
performed with omission of the primary antibody. The mean number 
of VEGF immunoreactive cells in randomly sampled 10 areas of 0.5 
mm2 in carotid plaques was examined. Then, according to the mean 
number of immunoreactive cells per unit area (0.5 mm2) in each 
carotid plaque, we performed the comparison between the level of 
VEGF expression in the intimal deep portions of carotid plaques (>0.3 
mm) and that in the intimal superficial portions (<0.3mm); and the 

Introduction
Cerebral infarction is often caused by tight stenosis of the carotid 

artery and ulceration of the carotid endothelium. It has been assumed 
that carotid intraplaque hemorrhage plays a significant role in the rapid 
progression of carotid stenosis and the formation of plaque ulceration 
leading to plaque disruption. Previous studies have demonstrated 
frequent intraplaque hemorrhage associated with ischemic stroke 
[1-8]. The mechanism of carotid intraplaque hemorrhage is not clear 
and it is not known whether it is caused by rupture of newly-formed 
intraplaque vessels. Vascular Endothelial Growth Factor (VEGF) [9], 
a potent angiogenesis factor, is produced by a variety of cells including 
glioma cells [10], smooth muscle cells [11], and macrophages [12]. In 
addition, VEGF is expressed in atherosclerotic plaques of carotid and 
coronary arteries [13-20]. However, role of VEGF in atherosclerotic 
carotid plaque has not been fully elucidated. Since the intraplaque 
core is hypoxic [21], we hypothesized that VEGF would be easily 
induced in sclerotic carotid plaques. To this end we investigated 
VEGF expression in atherosclerotic carotid plaques and examined the 
relationship between VEGF expression and intraplaque hemorrhage. 

Materials and Methods
Carotid plaques 

Sixty-seven sclerotic carotid plaques obtained from carotid 
endarterectomy were collected at Yokohama City University Hospital 
and affiliated hospitals. All cases from which sclerotic carotid plaques 
were obtained showed cerebral ischemic symptoms. They included 18 
transient ischemic attacks and 49 minor completed strokes. Intraplaque 
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comparison between the level of VEGF expression in the group with 
intraplaque hemorrhage and that without intraplaque hemorrhage.

Confocal fluorescent immunohistochemistry
In order to identify the origin of VEGF-expressing intraplaque 

cells, double-immunofluorescence method was performed. Whether 
VEGF was expressed in macrophage or smooth muscle cells was studied 
using cell type specific markers. At first, the specimens were exposed 
to a primary antibody mixture composed of: 1) anti-macrophage 
monoclonal antibody, KP-1 (1:50, Dakopatts, Glostrup, Denmark) 
and a rabbit polyclonal antibody against human smooth muscle actin, 
ACTA2 (1:100) LifeSpan Biosciences, Inc. Seattle, WA,USA); 2) anti-
macrophage monoclonal antibody, KP-1 (1:50) rabbit anti-human 
VEGF polyclonal antibody (1:100, Immunobiological Laboratories 
Company, Gunma, Japan) in PBS. Reaction was then undertaken 
with a second antibody mixture composed of: 1) a goat anti rabbit 
immunoglobulin conjugated to tetramethylrhodamine isothianate 
(TRITC, 1:40, Sigma Chemical Co., St. Louis, MO) in PBS; and 
2) a goat anti-mouse immunoglobulin conjugated to fluorescein 
isothiocyanate (FITC, 1:40, Cappel, West Chester, PA) in PBS. After 
a reaction for 30 minutes at 37oC, specimens were extensively washed 
with 0.075% Tween 20 in PBS. A confocal laser scanning microscope 
(Olympus, FV300, Tokyo, Japan) was employed for observation of 
double-stained cells. FITC-labeling cells showed green while TRITC-
labeling ones red. 

Western blotting 
Frozen tissue samples (2 mm3) from randomly sampled 6 carotid 

plaques were obtained at carotid endarterectomy. Specimens from 
3 nonsclerotic carotid walls were processed as control samples. 
Samples were homogenized in a lysis buffer (0.1 mol/L NaCl, 0.01 
mol/L Tris-HCL, 0.01 mol/L EDTA, 1ug/mL aprotinin). Assays to 
determine the protein concentration of the lysate were performed by 
comparison with known concentrations of bovine serum albumin. 
SDS-gel eletrophoresis was performed in 10% polyacrylamide 
gels under nonreducing conditions. Lysates equivalent to 15μg of 
protein from samples of carotid plaques and non-sclerotic carotid 
walls were electrophoresed on each gel, together with prestained 
molecular weight markers (Amersham, Buckingumshire, UK). The 
electrophoresis running buffer contained 25 mmol/L Tris base, 250 
mmol/L glycine, and 0.1% SDS (pH 8.3). The protein on the gel was 
subsequently transferred to a Hybond ECL nitrocellulose transfer 
membrane (Amersham, Buckingumshire, UK) in buffer containing 
20% SDS (pH 8.3). The membrane was placed in 5% skim milk 
in25 mmol/L Tris-buffered saline for 1 hour to block nonspecific 
binding. The membrane was then incubated for 3 hours with a mouse 
monoclonal antibody to VEGF, R11(1:200), diluted in TBS-T (50 
mmol/L Tris-HCL [pH 7.6], 150 mL NaCl, and 0.05% Tween20). 
After thorough washing with TBS-T, anti-mouse IgG, biotinylated 
secondary antibody (1: 400, Vector Laboratories, Inc., Burlingame, 
CA) was app1ied for 60 minutes. An additional series of washes was 
followed by incubation with preformed horseradish peroxidase-
streptavidin complex (1:200, Vector Laboratories, Inc., Burlingame, 
CA) and then by detection with DAB. Membranes were finally 
washed in distilled water and air dried.

Statistical analysis
All statistical results were expressed as the mean± standard 

deviation. For comparisons between values for groups, Scheff’s test 
after the analysis of variance-test was used, with probabilities of less 
than 0.05 being considered significant.

Results
VEGF expression in carotid plaques 

In sclerotic carotid plaques obtained at carotid endarterectomy, 
VEGF immunoreactivity was detected in the deep layer of the 
thickened intima, where it was found in the cytoplasm and nucleus 
of foam and fusiform cells and the extracellular matrix. However, 
this factor was detected in only a small number of fusiform or 
round cells in the superficial layer of the intima. Most foam cells 
and fusiform cells in the deep layer showed distinct expression of 
VEGF with immunohistochemistry. Expression of VEGF in foam 
cells was detected at thin cytoplasm, nucleus, and the extracellular 
matrix around the cells but not at the foamy component including 
lipid. VEGF expression in fusiform cells was mainly at the cytoplasm. 
In addition, foam cells around intraplaque hemorrhage and newly-
formed vessels showed distinct VEGF immunoreactivity. Nucleus 
and membranes of foam cells in medium and deep layers showed the 
distinct immunoreactivity of VEGF. However, elastic and collage nous 
fibers did not show the VEGF immunoreactivity. Foam cells and some 
extracellular matrix around newly-formed vessels and intraplaque 
hemorrhage showed particularly distinct immunoreactivity of VEGF 
(Figure 1). The statistical analyses revealed that the mean number of 
immunoreactive cells per unit area (0.5 mm2) in the intimal superficial 
portion (<0.3 mm) of carotid plaques, 33.5±9.7 was significantly 
smaller than that in the intimal deep portion (>0.3 mm) of carotid 
plaques, 94.7±52.8 (P<0.01). The mean number of immunoreactive 
cells for VEGF per unit area (0. 5 mm2) in carotid plaques with 
intraplaque hemorrhage (mean age, 64.2 years; male/female, 40/6), 
105.5±39.0 was significantly larger than 21 carotid plaques without 
intraplaque hemorrhage (mean age, 66.1 years; male/female, 18/3), 
43.1±27.9 (P<0.01) (Figure 2).

Identification of VEGF-immunoreactive cells
In the sclerotic carotid plaques, double-immunofluorence for 

VEGF (showing red) and macrophage (showing green) or SMA 
(showing green) revealed that most of foam cells in the medium 
plaque layer showed both positive in VEGF and in macrophage, and 
also that some foam cells and fusiform or round cells in the medium 
or deep plaque layer showed both positive in VEGF and in SMA. 

A B 

Figure 1: Immunohistochemical studies on atherosclerotic carotid plaques. 
A, Atherosclerotic carotid plaque including intimal layer (right), medium layer 
(center), and deep layer (left). VEGF immunorectivity is detected in medium 
and deep layers of a sclerotic carotid plaque but not in the superficial layer. 
B, Deep layer of the atherosclerotic carotid plaque. VEGF immunorectivity is 
detected in foam cells, fusiform cells, and surroundings .of the cells.
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In results, VEGF-expressing cells in sclerotic carotid plaques were 
identified mostly as a macrophage origin or partly as a smooth muscle 
cell origin (Figure 3).

Western blotting 
Western blot analysis of electrophoresed carotid plaque extract 

and carotid wall lysates reacted with VEGF antibody revealed distinct 
VEGF expression in all carotid plaques. In every carotid plaque 
extract, the Western blot showed a significant band, at approximately 
45kD, which may correspond to VEGF165 homodimers. The all 

nonsclerotic carotid wall lysates did not show any VEGF expression 
(Figure 4).

Discussion
A previous Immunohistochemical study with anti-VEGF 

polyclonal antibody revealed that the VEGF expression in pathological 
vessel walls was present in activated T cells in macrophage-rich 
areas and that its expression in normal vessels was found in smooth 
muscle cells and in the vasa vasorum [13]. Our immunoblot result 
revealed that atherosclerotic carotid plaques contained a high level 
of VEGF, while VEGF expression was not detected on immunoblot 
probably because of little VEGF in normal carotid artery or limited 
sensitivity of the immunoblot. The Immunohistochemical studies 
showed that most foam cells and some SMCs distinctly expressed 
VEGF in sclerotic carotid plaques but that nonsclerotic carotid 
walls scarcely contained the factor. In addition, foam cells around 
intraplaque hemorrhage and newly-formed vessels showed distinct 
VEGF expression and were mostly identified as a macrophage origin. 
Therefore, our results for the carotid artery are similar to those for 
other large pathological vessels. Since expression of VEGF followed 
by hypoxia-inducible factor-1 α is enhanced under the hypoxic 
condition [17,18], we propose that the expression and secretion of 
VEGF in foam cells which originate from macrophages and SMCs are 
promoted in the hypoxic core of the sclerotic carotid plaque. With 
progression of atherosclerosis, SMCs transform and wander in the 
vessel wall. SMCs in slightly sclerotic areas where the wandering of 
SMCs was not found also showed distinct VEGF expression. The 
different patterns of VEGF expression between highly and slightly 
sclerotic areas may be possibly due to various VEGF functions. It is 
likely that VEGF functions to maintain or restore the vessels in normal 
to slightly sclerotic vessel walls, whereas it promotes atherosclerosis 
in moderately to highly sclerotic vessel wall.

It is possible that the newly-developed vessels may easily 
rupture, resulting in intraplaque hemorrhage, which would lead to 
rapid progression of carotid stenosis and plaque disruption. VEGF 
secreted from foam cells in sclerotic plaques may induce intraplaque 
angiogenesis, leading to newly-formed vessels. This intraplaque 
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Figure 2: Relationship between VEGF expression and pathology in 
atherosclerotic carotid plaques. A, The number of VEGF-expressing cells 
per unit area (0.5 mm2)  in atherosclerotic carotid plaques with and without 
intraplaque hemorrhage. The mean number of VEGF-expressing cells per 
unit area in the group with intraplaque hemorrhage was significantly lager 
than that without intraplaque hemorrhage (P<0.01). B, The number of VEGF-
expressing cells in the intimal superficial portion (< 0.3 mm) and that in the 
intimal deep portion (>0.3 mm) of atherosclerotic carotid plaques. The mean 
number of VEGF-expressing cells in the intimal deep portion was significantly 
larger than that in the intimal superficial portion (P<0.01). PH, With intraplaque 
hemorrhage. PH-, Without intraplaque hemorrhage. d, Deep portion of carotid 
plaques. s, Superficial portion of carotid plaques.

A B 

Figure 3: Double-immunofluorescence histochemistry for VEGF and 
macrophage in deep layer of a carotid plaque. A,VEGF-positive cells showing 
red with TRITC. Macrophage-positive cells showing green with FITC. The 
most of foam cells showing both positive. B, Double-immunofluorescence 
histochemistry for VEGF and smooth muscle cells in medium layer of a 
carotid plaque. VEGF-positive cells showing red with TRITC. SMA-positive 
cells showing green with FITC. Some of fusiform cells are identified both 
positive.
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2 Carotid plaque 

3 Normal carotis 
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Figure 4: Western blot analysis of electrophoresed carotid plaque extract and 
carotid wall lysate reacted with VEGF antibody. Distinct VEGF expression is 
identified in a carotid plaques extract. The Western blots showed a significant 
band at 45kD, which may correspond to VEGF165 homodimers. The non-
sclerotic carotid wall lysates did not show any VEGF expression. Markers 46, 
31, 20.1, and 14.4 indicate molecular weight in kilodaltons.



Austin J Cerebrovasc Dis & Stroke 1(6): id1030 (2014)  - Page - 04

Hiroshi Kanno Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

vascularization may stimulate further carotid atherosclerosis. These 
carotid plaque changes can cause cerebral ischemic lesions. Therefore, 
we suppose that VEGF may play an important role in carotid 
intraplaque neovascularization as one of the various angiogenesis 
factors.

Other angiogenesis factors such as basic Fibroblast Growth 
Factor (bFGF), [22,23] platelet-derived growth factor, insulin-like 
growth factor-1[24], transforming growth factor-β 1[25], soluble 
vascular cell adhesion molecule-1[26], interleukin-8, and tumor 
necrosis factor-α[27] are less specific for endothelial cells than 
VEGF and also less able to permeate membranes than it. VEGF 
also promotes extravasation of plasma proteins, resulting in the 
formation of extra vascular fibrin deposition. Since the above 
factors are not so pronounced as VEGF under hypoxic conditions, 
our findings in carotid plaques support our contention that VEGF 
is one of the most important angiogenesis factors in atherosclerotic 
carotid plaques. However, since bFGF expression was identified in 
smooth muscle cells in normal media and in the endothelium of new 
vessels, [25,28] we suppose that bFGF may also play an important 
role in atherosclerotic angiogenesis of the factor along with VEGF. 
Basic FGF does not contain a signal peptide for secretion into the 
extracellular environs, whereas VEGF does have one [29]. These facts 
probably suggest that VEGF may play a more important role than 
bFGF in intraplaque angiogenesis. An experimental trial of VEGF 
gene transfer into the rabbit carotid wall using the Sendai virus vector 
demonstrated a thickened wall containing newly-formed vessels in 
the intima [30]. This model also supports our view that VEGF may 
promote angiogenesis in carotid plaque. If VEGF plays a critical 
role in the carotid atherosclerosis, anti-VEGF drug may be effective 
against the progression of carotid arteriosclerosis. 

Finally, there are two limitations in this study. First, although the 
histological assessment was performed on the lesion with maximum 
stenosis, the location of intraplaque hemorrhage may not be always 
at this part because there were variations in carotid plaques. Second, 
some artifacts after the removal of plaque specimens were not 
completely excluded. 

Conclusion
In conclusion, VEGF expression is induced in the deep portion 

of the atherosclerotic carotid plaques. It may play an important role 
in the growth of atherosclerotic carotid plaques and induction of 
intraplaque hemorrhage causing ischemic stroke. 
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