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Abstract

With increasing concerns about CO2 emissions and their impact on global 
warming, CO2 capture technologies have been widely studied. Adsorption 
technology, as an important process for gas separation, has also been 
studied for CO2 capture from flue gas for more than two decades. Because the 
pressure of most flue gas streams is approximately atmospheric, vacuum swing 
adsorption process (VSA) is preferred. This paper provides an overview of the 
development of VSA processes for CO2 capture based on commercial adsorbent 
materials. We discuss the general trends in process performance with respect 
to adsorbent characteristics, cycle design and operating conditions. We have 
also discussed the impact of impurities in feed gases on VSA processes and 
strategies for dealing with the negative impacts. Finally, energy consumption 
in CO2VSA processes is summarized. The review of process performance is 
mainly based on simulation and laboratory scale work.
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be available. Taking a typical coal-based power plant for instance, the 
flue gas stream may be available at a temperature ranging from 30 to 
80oC or even higher, depending on the extent of heat recovery from 
the stream [15]. The VSA performance is sensitive to the feed gas 
temperature, so a further heat treatment may be required to condition 
the flue gas before feeding it to the VSA plant, which will inevitably 
impact on the separation efficiency and economics of the process.

Adsorbents play a key role in adsorption technology. The 
adsorbent determines the overall CO2 capture performance in 
VSA technology [16,17]. The key elements for a good adsorbent 
in CO2VSA technology are high selectivity of CO2 over N2, high 
adsorption capacity of CO2, rapid adsorption/desorption kinetics, 
stable adsorption capacity after repeated cycles, and adequate 
mechanical strength of the particles [18]. Many adsorbents with 
high CO2 adsorption capacity and selectivity have been developed 
recently such as MOFs, amine modified adsorbents, etc. [19]. While 
the number of new adsorbent materials reported has proliferated, 
only a very select few will undergo bench-top testing and even fewer 
will pass on to pilot testing stage, partly due to limited availability 
of production materials since large scale production is often not the 
goal of initial materials research. Therefore, VSA process design for 
CO2 capture still focuses on commercially available materials such as 
zeolites, activated carbon and CMS which can be purchased in bulk 
and tested in pilot or field installations [20-24]. This paper provides a 
review of VSA process development for CO2 capture, and specifically 
discusses how adsorbent characteristics, process design and operating 
conditions impact the overall process performance.

Commercial CO2 Adsorbents
In capture processes of CO2 from flue gas streams, it is assumed 

that the impurities in the feed gases including water are removed 
through flue gas pre-treatment processes so that CO2 separation from 
flue gases can be represented as that from a mixture of CO2 and N2. 

Introduction
CO2 is a major greenhouse gas and hence, contributes significantly 

to global warming. The development and deployment of CCS (CO2 
capture and storage) technologies is considered the most important 
option to make much deeper cuts in greenhouse gas emissions, and 
CO2 concentration of greater than 95% is commonly required for 
sequestration [1]. Currently three major separation technologies 
namely absorption, membranes and adsorption are being developed 
to capture and concentrate CO2 from flue gases for CSS applications 
[2, 3]. Absorption is the most mature of these technologies, and has 
long been used for CO2 capture, though not from power plants. 
However, it results in high energy consumption during the high 
temperature absorbent regeneration [4].

Adsorption technology is increasingly becoming popular for 
CO2 capture because of its potential low energy consumption, simple 
operation, easy maintenance and flexibility in design to meet different 
demand requirements [5-7]. Each of the different adsorption processes 
such as TSA (temperature swing adsorption), PSA (pressure swing 
adsorption), VSA (vacuum swing adsorption), and ESA (electrical 
swing adsorption) may be most suitable for treating feed gases with 
different CO2 concentrations [8]. The TSA can be designed to directly 
utilize cheaper, low-grade thermal energy resources from power 
plants for regeneration to reduce the operating cost. However, the 
longer time required for heating/cooling limits its application for CO2 
capture. With the long cycle time, productivity will be lower compared 
to other adsorption technologies. The product may also be diluted by 
the purge gas if regeneration is performed by direct hot gas purge as 
used in conventional systems [9-12]. Because the pressure in flue gas 
streams is approximately equal to 1.0 bar and CO2 concentration in 
the feed gas is commonly higher than 10%, VSA is considered more 
economical for CO2 capture than PSA (where significant compression 
of the feed gas is required) [13,14]. The temperature range of flue 
gases varies by their sources and pre-treatment processes that may 

Review Article

Overview of CO2 Capture from Flue Gas Streams by 
Vacuum Pressure Swing Adsorption Technology
Jianghua Ling1,2, Augustine Ntiamoah2, Penny 
Xiao2*, Dong Xu3, Paul A Webley2, Yuchun Zhai1

1School of Materials and Metallurgy, Northeastern 
University, China
2Department of Chemical and Bimolecular Engineering, 
University of Melbourne, Australia
3Guodian New Energy Technology Research Institute, 
China Guodian Corporation, China

*Corresponding author: Penny Xiao, Department 
of Chemical and Bimolecular Engineering, University of 
Melbourne, Victoria 3010, Australia

Received: May 31, 2014; Accepted: August 08, 2014; 
Published: August 12, 2014

Austin
Publishing Group

A



Austin Chem Eng 1(2): id1009 (2014)  - Page - 02

Penny Xiao Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

Zeolite materials have been widely studied for CO2 capture from 
flue gases in fossil fuel power plants, natural gas and biogas facilities 
[5,14,25,26]. According to the literature on CO2 capture using different 
types of natural and various types of synthetic zeolites such as Y, X, A, 
13X zeolite shows superior performance for CO2 separation from N2 
at relatively low temperatures [27]. Some researchers have considered 
5A in TSA processes because of its higher volumetric capacity and 
high working capacity between low and high temperatures [28,29]. 
Zeolite 13X, studied for more than two decades, is the benchmark 
material for CO2VSA systems because of its high working capacity 
and selectivity for CO2 at the prevailing conditions of the process. 
From the isotherms of CO2 and N2 on 13X [22,30], both CO2 and 
N2 adsorption amount increases as their partial pressures increase 
(Figure 1) in the usual way as expected for a physic-sorbent. As the 
temperature increases, the adsorption amount for both CO2 and N2 
decreases, indicative of exothermic adsorption. Although 13X is a 
physic-sorbent for CO2 and as such should be restricted to modest 
temperature application, we have found that it presents a relatively 
high CO2 working capacity even over 120oC. Therefore, it is an ideal 
adsorbent for CO2 and N2 separation as it has a wide operating 
temperature range.

CO2 adsorption capacity on 13X is reduced significantly by water 

vapor because water is be strongly adsorbed onto the hydrophilic 
sodium cations within the supercage, displacing sites for CO2 
adsorption. As a result, a guard layer must be employed to avoid 
moisture contamination of 13X zeolite. Traditional activated carbon 
is also a commonly used adsorbent for CO2 adsorption but contains 
both hydrophobic and hydrophilic sites on its surface. Water vapor 
can be adsorbed onto the surface by hydrogen bonding to the surface 
functional groups. However, this bonding is very weak so that the 
water vapor can be removed by reducing its partial pressure and as 
a result activated carbons are often regarded as more suitable for 
wet flue gas treatment [31]. The isotherms of water vapor and CO2 
on activated carbon are shown in (Figure 2) [32]. CO2 adsorption 
capacity on activated carbon is much lower compared to that of 
zeolite 13X. However, its ability to moderately withstand water vapor 
makes it a promising material in the application of CO2 capture from 
wet (real) flue gases. Current research is focused on modifying the 
activated carbon surface with desired functional groups in order to 
improve its CO2 adsorption capacity and selectivity [33, 34].

VSA Process Development
Cycle design

There are basic five steps employed in most VSA process designs 

Figure 1: Isotherms of CO2 and N2 on zeolite 13X at low temperature [22](left) and high temperature [30] (right).

Figure 2: Isotherms of water vapor and CO2 on activated carbon [32]: water vapor (left) and CO2 (right).
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[21,26], which include adsorption, desorption, re-pressurization, 
pressure equalization and product purge (Figure 3). In the adsorption 
step, CO2 is adsorbed onto the adsorbent packed in the column as 
the feed gas (flue gas) passes through the column, while CO2-lean 
gas stream exits to the atmosphere. The amount of CO2 adsorption 
depends on the operating pressure and temperature. In the desorption 
step, the adsorbed CO2 is desorbed from the bed and extracted into 
a CO2-rich gas phase by reducing the pressure to vacuum (or sub-
atmospheric) levels. In the re-pressurization step, feed gas or part of 
the CO2-lean gas is used to pressurize the adsorption bed, from the 
bottom or top of the bed, until the pressure in the bed is equal to 
that in the feed step for the next cycle. Pressure equalization is used 
in multiple-bed VSA systems. A bed at higher pressure (usually after 
adsorption) transfers gas to a bed at lower pressure (after vacuum 
desorption) until their pressures equalize. This can bring energy 
savings by reducing the amount of re-pressurization required by the 
low-pressure bed, and also improve CO2 product purity. For product 
purge, part of the extracted product or a CO2-rich gas is used to 
purge the bed before the desorption step. However, in order to obtain 
high CO2 product purity, the pressure at the top of the bed needs to 
be controlled to the same pressure as in the last equalization step. 
Because CO2 adsorption capacity is much higher than N2, most N2 
trapped in the void spaces of the adsorbent or adsorbed in the bed can 
be displaced by the purge gas, leading to a more pure CO2 product in 
the subsequent vacuum desorption step.

A light reflux step can also be included in the cycle design [35], 
but this step must be carefully controlled to avoid breakthrough of 
the nitrogen into the CO2 product since the proportionate pattern 

profile in this step will lead to rapid N2 propagation. CO2 adsorption 
on zeolite 13X is much stronger (and non-linear) than N2 so that the 
light refluxes gas flow (a N2-rich gas stream) cannot easily clean the 
CO2 front but rather dilutes the final CO2 product.

Rapid-swing adsorption, characterized by faster cycling permits 
the adsorbent to be used more frequently and, therefore, leads to CO2 
productivity and relatively smaller plant sizes. However, recoveries 
may be lower due to kinetic limitations. It is often used in O2 
concentrators, where high purity and/or recovery rate is not essential 
and feed gas can be discarded without concern [36]. Therefore, this is 
not discussed further in this review.

Operating parameters in CO2VSA processes

Optimizing operating parameters is important for the VSA 
process to achieve satisfactory performance. Pressure and temperature 
are the major operating parameters, and affect CO2 product purity 
and recovery by changing working capacity. CO2 working capacity 
(WC) and selectivity (S) can be estimated from isotherm of single 
component on adsorbent by equations 1, 2 and 3 below:

WC (mol/kg) = CO2PH – CO2PL (1)

SWC = WCCO2/WCN2  (2)

S = CO2PH/N2PH (3)

Where WC is CO2 working capacity and S is CO2 selectivity; 
CO2PH is the amount of CO2 that is adsorbed at the highest CO2 
partial pressure (i.e. CO2 partial pressure in the feed) and CO2PL is 
the amount of CO2 that is adsorbed at the lowest CO2 partial pressure 
(i.e. CO2 partial pressure reached at the end of desorption); SWC is the 
selectivity for working capacity of CO2 and N2. Although selectivity 
S is often used to assess adsorbent performance, selectivity based on 
working capacity is a more accurate assessment metric.

As working capacity varies with CO2 partial pressure, higher 
pressure at the same CO2 concentration in feed gas will result in an 
increase of CO2 adsorption in the bed. However, more energy will 
be required for compressing the feed gas. Therefore, most studies 
are conducted for constant pressure feed steps. The pressures at the 
end of vacuum desorption and equalization is most important in 
VSA testing as shown in Figure 4. During the pressure equalization 
step, some of the CO2 adsorbed in the sorbent can be released into 

Figure 3: VSA cycle design [26].

Figure 4: CO2 purity and recovery with three-bed CO2VSA system affected by vacuum pressure (left) and operation temperature (right) [22].
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the gas phase so that N2 in the void spaces of the bed ahead of the 
CO2 front or even some co-adsorbed N2 can eluted from the bed 
(which is transferred onto another bed). Thus, after several pressure 
equalizations, SWC will increase, leading to increase in CO2 product 
purity [26]. At the same time, the pressure in the bed (before the 
evacuation step) will decrease, which means the vacuum pump 
will perform less work during desorption, and this can bring some 
amount of energy savings. The vacuum pressure applied is very 
important and it affects both CO2 purity and recovery. Many previous 
studies [22,26,35,37], have shown that deep vacuum levels are needed 
to achieve high recoveries and purities for CO2 capture from post-
combustion flue gas streams. However, the deeper vacuum requires 
multistage pump units which can be very expensive and also consume 
much power. The deep vacuum also results in very large suction and 
valve line sizes [38].

Temperature is another important parameter in the VSA system 
as shown in Figure 4. For zeolite 13X (Figure 1), CO2 working capacity 
varies at different temperatures: the working capacity is 0.35mol/kg at 
0oC as CO2 partial pressure changes from 15kPa to 10kPa, but 0.4mol/
kg at 40oC and 0.35mol/kg at 60oC. Selectivity normally increases 
as temperature increases in the temperature range from 40 to 90oC 
on zeolite 13X. Therefore, CO2 purity in CO2 product increases 
as the operation temperature increases, which is confirmed by our 
experiments (Figure 4).

Flow-rates in the feeding and desorption steps are also important. 
Firstly, a high flow-rate will cause large pressure drop (∆p) which can 
be described by the Ergun equation [39] (equation 4):

  
2 2
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3 2 3
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µ ε ε ρ
ε ε
− −∆

− = +    (4)

Where L is the height of the bed, µ is the fluid viscosity ε is the 
void space of the bed, u0 is the fluid superficial velocity, dp is the 
partial diameter and ρ is the density of the fluid.

The pressure drop increases as the velocity increases, which will 
affect CO2 adsorption and also desorption. Higher pressure is required 
to overcome the pressure drop for the feed gas to reach a higher flow-
rate and the pressure drop also causes insufficient vacuum level at 
the top of bed during desorption step so that adsorbed CO2 cannot 
be desorbed effectively. The flow-rate also impacts adsorption/
desorption kinetics. CO2 adsorption on 13X beads is macropore 
diffusion controlled, both under Knudsen and molecular diffusion 
regimes [40]. Thus, the flow-rate will affect CO2 recovery during 
VSA process as well (Figure 5 left). The data in Figure 5 left were 
obtained by fixing the level of vacuum pressure reached at the end of 
desorption, while varying desorption time, so that velocity decreases 
as desorption time increases. Improvements in product purity by CO2 
product purge also depend on the amount of product used for purge 
[26,35]. Our study [26] found that CO2 product purity increased 
almost linearly from 94.3 to 98.5% when the CO2 purge percentage 
increased from 0 to 50% (Figure 5 right).

Figure 5: CO2VSA performance affected by flow-rates and CO2 product percentage [26].

Figure 6: CO2VSA performance at varying CO2 inlet concentration [22,43].
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Re-pressurization also affects the process performance. The 
source of the re-pressurization gas can be either the feed gas or the 
exhausted gas (CO2-lean gas). Re-pressurization using CO2-lean gas 
can improve CO2 product recovery [35]. Because the CO2-lean gas 
can push the CO2 front downward to clean the top of the bed, less CO2 
is emitted from the bed during the next adsorption step. However, 
the effect of re-pressurization is diminished for multiple-bed VSA 
systems. After several pressure equalizations between the beds, less 
gas is required for re-pressurization because of the small gap in 
pressures after equalization and adsorption steps.

CO2 Capture from Different Sources 
(Different Inlet CO2 Concentrations)

A typical flue gas from a fossil fuel power plant contains CO2 of 
10-15% and this emission represents about 50% of all greenhouse 
gas emissions [41]. With a well-designed VSA process and a good 
adsorbent such as zeolite 13X, a high CO2 purity at a high recovery 
rate can be obtained from flue gases for CCS applications [22,37]. 
However, a much deeper vacuum pressure <= 5kPa (with higher 
power consumption), or a two-stage VSA process (which also lead 
to additional equipment cost) would be needed in order to reach 
such high CO2 product purity and recovery [6,14]. Apart from CO2 
emissions from fossil fuel power plants, there are also emissions 
from other industrial sources where CO2 concentrations vary over a 
large range: 15-33% from cement industries, 20-30% from iron and 
steel industries [42]. The VSA process will show better results when 
employed to capture CO2 from these sources. CO2 product recovery 
increases at the same vacuum pressure as CO2 concentration in the 
feed gas increases (Figure 6 left) [43]. Deep vacuum pressure during 
desorption steps in CO2VSA processes may be avoided when dealing 
with the gas feeds with higher CO2 concentrations because of their 
higher working capacities. Thus, capture cost will decrease as CO2 
concentration in feed gas increases (Figure 6 right) [22].

Effects of Impurities on the CO2VSA Process 
Performance

Water vapor, SOx and NOx are common impurities in flue gases 
from power plants, and these negatively affect CO2 adsorption 
capability on zeolites [44,45]. Thus, capturing CO2 from flue gas at 

coal-fired power stations by pressure/vacuum swing adsorption may 
be complicated by the existence of these impurities when commercial 
CO2 selective adsorbents are used. Conventional process designs rely 
on using a pre-treatment process to remove water, SOx and NOx, 
which adds considerably to the overall cost.

A wash tower is used to reduce the concentration levels of SOx 
and NOx in our CO2 capture demonstration plant [46]. The trace 
amounts still remaining may not significantly affect the CO2 capture 
process [47,48]. This leaves water vapour as the main impurity and 
therefore, the discussion on this section focuses on CO2 capture in 
the presence of water vapour. Flue gas streams usually contain 8-10% 
water vapour.

In study conducted in our research group [49], a multiple 
adsorbent layered column was designed to remove water and CO2 at 
the same time from the feed gas. The first layer can be a water reversible 
adsorbent such as sorbead or activated alumina. This protects the 
main layer-13X from the negative effects of water vapour on its 
performance [47,49-51]. Higher CO2 concentration can also help 
remove water by internal purge during vacuum desorption (Figure 7 
left). As discussed above, activated carbon shows good performance 
in the presence of water vapour [32]. We found that the effect of water 
vapour on CO2 adsorption is not significant on activated carbon, and 
CO2 can accumulate at the bottom of bed due to its high adsorption. 
However, more energy is required to remove water from the bed. 
Figure 7 right shows CO2 concentration in the bed outlet gas during 
the adsorption step for dry gas and wet gas containing 4.6% water.

Power Consumption
Power consumption in PSA/VSA is often calculated according to 

adiabatic power law [26].
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where vacQ is an instantaneous flow-rate (m3/s) and t∆ is time 
interval (s); η  (pump coefficient) equals 0.7 and k (specific heat ratio) 
is 1.28 for CO2 and 1.4 for air, feedQ represents an instantaneous flue 
gas flow rate (m3/s), Patm (atmospheric pressure 101.325 kPa), Pfeed 
and Pvac (kPa) represent instantaneous pressures during adsorption 

Figure 7: Water and CO2 concentration in double layered adsorption bed (left) [49] and CO2 concentration in emission gas using activated carbon as adsorbent 
(right) [32].
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(feeding) and desorption (vacuum) stages of the process. In this 
equation, the vacuum power is made up of two parts: power due to 
desorption and power due to the product purge step (to keep the bed 
pressure equal to that in the last step).

Most power in VSA process is consumed by vacuum pumps during 
desorption. The value increases with deeper vacuum desorption. 
However, CO2 productivity also increases with deeper vacuum 
levels. Thus, there is an optimum value of power consumption in the 
VSA process [26,35]. Measured power consumption is much higher 
than calculated or simulated values. It is found that the measured 
power consumption of VSA processing corresponded to theoretical 
values based on 30% pump efficiency, whereas 70% is often assumed 
in calculations [37]. From single stage CO2VSA, deep vacuum is 
conducted in order to obtain CO2 product purity of 95%. It must be 
noted that pump efficiency, η, may decrease with deeper vacuum level 
because volumetric velocity decreases nonlinearly as deeper vacuum 
levels are required. When the system is operated at moderate vacuum 
pressure, the error between experimental result and calculation value 
may be less.

There are no operating large scale commercial CO2 capture 
processes by adsorption technology so far. Published estimates 
for CO2 capture power vary widely, mainly as a result of different 
assumptions regarding technical factors related to plant design and 
operation. We show some of the published energy consumption of 
CO2VSA processes in Table 1.

Conclusions and Future Development
 CO2 product of high purity can be obtained from fossil fuel flue 

gas streams, at high recovery rates using VSA cycles; however, very 
low vacuum pressure levels are required during the desorption step. 
Two-stage VSA processes can be used, which may avoid operating 
at deeper vacuum with each unit operating at moderate vacuum 
pressure. However, capital cost will increase because of the extra 
VSA unit. TVSA may be promising (VSA with slight increase in 
bed temperature during desorption) since it combines the merits of 
rapid vacuum swing and effects of temperature rise on the adsorption 
equilibrium. In this case, the system will not need to operate at deep 
vacuum. High performance may be generally achieved at intermediate 
vacuum levels as CO2 concentration in feed gas streams increases. 
Therefore, VSA technology is very promising for CO2 capture from 

CO2 sources where the inlet CO2 concentrations are higher such as in 
cement, iron and steel, etc. manufactories.

Both multiple-layered adsorption beds and adsorbents with 
hydrophobic characteristics can be applied for eliminating the 
negative impact of impurities, such as water vapour, traced SOx 
and NOx, on CO2 capture performance, but more energy may be 
consumed for removing the collected impurity from the system. 
Therefore, new adsorbents, which have higher CO2 working capacity, 
high selectivity, and the characteristics of easy desorption and high 
tolerance for impurities are still required.
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Process
type Purity, %CO2 Recovery, %CO2

Sp. power,
MJ/kg CO2
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2-stage VPSA 96.54 93.35 0.528 [58]

Table 1: Purity, recovery and specific power consumption of some VSA studies 
for CO2 capture.
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