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Abstract

In 21st century most important challenges in the global water situation, 
mainly resulting from worldwide population growth and climate change, 
require novel innovative water technologies in order to ensure supply of safe 
drinking water. The adaptation of highly advanced nanotechnology to traditional 
process engineering offers new opportunities in technological developments for 
advanced water and wastewater technology processes. The development of 
cost-effective and stable materials and methods for providing the fresh water 
in adequate amounts is the need of the water industry. Traditional water/
wastewater treatment technologies remain ineffective for providing adequate 
safe water due to increasing demand of water coupled with stringent health 
guidelines and emerging contaminants. Nanotechnology-based multifunctional 
and highly efficient processes are providing affordable solutions to water/
wastewater treatments that do not rely on large infrastructures or centralized 
systems. These advances range from the direct applications of synthesized 
nanoparticles as adsorbents for removing toxic contaminants or as catalysts 
for oxidative degradation of noxious contaminants in wastewater. Incorporation 
of nanoparticles with membrane separation technology, presents a composite 
photocatalytic membrane having immense potential to treat organic pollutants 
in effluents. Though a number of minerals, clays and agro wastes have 
been regularly used for the removal of metallic pollutants from water and 
industrial effluents, recently emphasis have been given on the application of 
nanoparticles and nanostructured materials as efficient and viable alternatives 
to conventional adsorbents. Because of their importance from an environmental 
perspective, special emphasis has been given to the removal of the metals 
Cr, Cd, Hg, Zn, As, and Cu. This review presents recent developments in field 
of nanotechnology for water and wastewater treatment emphasizing various 
nanomaterials, intrinsic properties, mechanisms, application spectrum; as well 
as advantages and limitations compared to existing processes, challenges and 
research needs for commercialization.
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(fiber and ceramic), activated carbon treatment etc. Over the last few 
decades, nanotechnology is emerging as a rapidly growing sector of a 
knowledge-based economy due to unique physiochemical properties 
of nanomaterial. This technology gained a tremendous impetus due 
to its capability of reformulating the particle of metals into new nano-
sized form. ‘Nano’ is derived from the Greek word for ‘dwarf’. A 
nanometer is one billionth of meter (10-9) and might be represented 
by the length of ten hydrogen atoms lined up in a row. The high 
surface area to mass ratios of nanoparticles can greatly enhance 
the adsorption capacities of sorbent materials. Nanotechnology is a 
deliberate manipulation of matter at size scales of less than 100 nm 
(Figure 1) in at least one dimension meaning at the level of atoms 
and molecules as compared with other disciplines such as chemistry, 
engineering, and materials science. In addition to having high specific 
surface areas, nanoparticles also have unique adsorption properties 
due to different distributions of reactive surface sites and disordered 
surface regions [7]. Their extremely small feature size is of the same 
scale as the critical size for physical phenomena for example, the 
radius of the tip of a crack in a material may be in the range 1-100 

Introduction 
Water is the most vital substance in our life. Approximately, one-

sixth of the world’s population suffers from access to clean drinking 
water. The world is facing formidable challenges in meeting rising 
demands of clean water as the available supplies of freshwater are 
depleting due to (i) extended droughts, (ii) population growth, (iii) 
more stringent health based regulations and (iv) competing demands 
from a variety of users [1-3]. Therefore, an urgent stride is required 
to develop an innovative technology to provide clean and affordable 
water to meet human needs. Clean potable water is essential to 
maintain healthy life. In countries like India, 80% of the diseases are 
waterborne specially drinking water. Any water intended for drinking 
should contain fecal and total coli form counts of zero, in any 100 mL 
sample as recommended by the World Health Organization (WHO) 
[4]. Today a number of techniques are used for treatment of water i.e. 
chemical and physical processes such as treatment of chlorine and 
its derivatives, ultraviolet light [5], boiling, low frequency ultrasonic 
irradiation [6], distillation, reverse osmosis, water sediment filters 
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nm. The way a crack grows in a larger-scale, bulk material is likely to 
be different from crack propagation in a nanomaterial where crack 
and particle size are comparable such as Choi et al. [8] describes the 
application of novel chemistry methods for the fabrication of robust 
nanostructured titanium oxide (TiO2) photo catalysts. Such materials 
can be applied in the development of efficient photocatalytic systems 
with unique characteristics of high surface area (147 m2/g) and 
porosity (46%), narrow pore size distribution ranging from 2 to 8 
nm, homogeneity without cracks and pinholes, active anatase crystal 
phase, and small crystallite size (9nm) for the treatment of water. 
These TiO2 photo catalysts were highly efficient for treatment of 
dye industry effluent with complete mineralization of various dye 
components. 

The several advances were made in the study of nano-scale 
structures. The term nano-technology was described by Taniguchi 
(1974) as “Nano-technology mainly consists of the processing of, 
separation, consolidation, and deformation of materials by one atom 
or one molecule” [9]. The tools and the methods for nanotechnology 
involve imaging, measuring, modeling, and manipulating matter 
at the nanoscale. Development of particles at the nanoscale level 
contributed extensively to the production, modification and 
shaping of structures that were used in different industrial, health 
and environmental applications [10-12]. Contamination of water 
with toxic metal ions [Hg(II), Pb(II), Cr(III), Cr(VI), Ni(II), 
Co(II), Cu(II), Cd(II), Ag(I), As(V) and As(III)] is becoming a 
severe environmental and public health problem [13]. To achieve 
environmental detoxification, various techniques like adsorption, 
precipitation, ion exchange, reverse osmosis, electrochemical 
treatments, membrane filtration, evaporation, flotation, oxidation 
and biosorption processes are extensively used. Nanostructured 
materials such as magnetic nanoparticle, carbon nanotubes, silver-
impregnated cyclodextrin nano-composites, nano structured 
iron zeolite, carbon-iron nanoparticles, photocatalytic titania 
nanoparticles, nanofiltration membranes and functionalized silica 
nanoparticles can be employed in water treatment to remove heavy 
metals, sediments, chemical effluents, charged particles, bacteria 
and other pathogens. Nanoparticles, like nanosized zero valent ions 
when used as adsorbents, helps in pollutant removal/ separation from 
water as well as catalyze the chemical or photochemical oxidation 
process for effective destruction of persistent contaminants [14]. 

Scientists classified nanoscale materials that are being evaluated 
as functional materials for water purification into four classes 
namely, dendrimers, metal-containing nanoparticles, zeolites and 
carbonaceous nanomaterials [15]. Above mentioned nanomaterials 
can be efficiently used in wastewater treatment and purification 
utilizing the unique features of nanotechnology. Nanotechnology has 
been considered effective in solving water problems related to quality 
and quantity [16]. Nanomaterials like carbon nanotubes (CNTs) and 
dendrimers are contributing to the development of more efficient 
treatment processes among the advanced water systems due their 
exceptional adsorption properties [17,18]. There are many aspects 
of nanotechnology to address the multiple problems of water quality 
in order to ensure the environmental stability. The most promising 
materials and applications are highlighted in Table 1. 

Opportunities and challenges of using nanomaterials in the 
purification of surface water, groundwater and industrial wastewater 
streams is a matter of continuing concern. Apart from the conventional 
utilization pattern of the nano particles like, killing harmful organisms 
[19], repairing body tissue [20], and curing diseases; nanotechnology 
in future can be exploited in large scale water treatment plants being a 
cost effective and labor intensive process and a promising alternative 
to conventional water treatment practices. In short, the development 
of different nanomaterials like nanosorbents, nanocatalysts, zeolites, 
dendrimers, and nanostructured catalytic membranes have made it 
possible to disinfect disease causing microbes, removing toxic metals 
and organic and inorganic solutes from water/wastewater. 

Strategies for Synthesis of Nanoparticles 
Nano-sized materials spontaneously synthesized in nature 

being highly unstable, its synthesis processes are crucial to choose 

Figure 1: A size comparison of nanoparticle with other larger-sized materials [66].

Type of Nanoparticle Type of pollutants removed

Nano Scale metal Oxide Heavy metals Radionucleides

Nano catalyst PCB, Azodyes,Pesticides etc

Carbon nano tubes Organic Contaminant

Bioactive nanoparticle Removal of Bacteria, fungi

Biomimetic membranes Removing Salts

Nano Structured catalytic Decomposition of organic
pollutant inactivation of micro organisms

Table 1: Application of Nanotechnology in water and waste water treatment.
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for practical applications. Numerous techniques are used to 
fabricate different nanomaterial. Nanoparticles can be produced 
from larger structures (top down) by use of ultrafine grinders, 
lasers and vaporization followed by cooling. For complex particles, 
nanotechnologists generally prefer to synthesize nanostructures 
by a bottom-up approach by arranging molecules to form complex 
structures with new and useful properties. ‘Layer by layer’ deposition 
is a technique where the platforms for bilayer membranes that can be 
used for protein analysis can be fabricated by layering of sodium silicate 
and poly (allylamine hydrochloride) on gold followed by calcinations 
in a furnace. Lipid bilayers can fuse to the silicate layer and be used to 
detect specific proteins [21]. Rivero et al. [22] have reported synthesis 
of silver nanoparticles (AgNPs) with different shape, aggregation 
state and color (violet, green, orange) successful incorporation into 
polyelectrolyte multilayer thin films using the layer-by-layer (LbL) 
assembly. Zhao et al. [23,24] fabricated multilayer films containing 
silver nanoparticles and polycation poly (dialyldimethylammonium 
chloride) (PDDA) following similar techniques. During synthesis 
of biocompatible fibers, nanoparticle play crucial role in providing 
temporal stability. During that particular synthesis process 
(hydroxyapatite-aspartic acid/glutamic acid), crystallization is one 
the effective strategies. Gold nanorods and nanoparticles with other 
shapes were produced by incubation of dead oat stalks with an acidic 
aqueous solution of gold ions (Au III) [25]. Some living plants are 
also known to take up and sequester heavy metals (to prevent being 
poisoned by these metals) and these plants and its leaf and seed extract 
may also be useful in producing nanoparticles of metals also [26-28], 
which are all biomass reduction process of nanoparticle synthesis 
and micro-living cells have been harnessed to produce nanoparticles 
also known as microbial synthesis, for example, silver nanoparticles 
produced extracellularly by the fungus Aspergillus fumigatus [29]. 
Gold and silver nanoparticles can also be produced by other fungi 
and a number of bacterial species [30]. Major nanoparticle synthesis 
techniques belongs to two broad areas namely, gas phase synthesis and 
sol-gel processing. Nanoparticles with diameters ranging from 1 to 10 
nm with consistent crystal structure, surface derivatization and a high 
degree of monodispersity have been processed by both gas-phase and 
sol-gel techniques. Initial development of new crystalline materials was 
based on nanoparticles generated by evaporation and condensation 
(nucleation and growth) in a sub-atmospheric inert-gas environment 
[31,32]. Various aerosol processing techniques have been reported to 
improve the production yield of nanoparticles [33,34]. In self assembly 
technique, manipulation of physical and chemical conditions such as 
pH, temperature and solute concentrations can induce self assembly 
of molecules to form fibrous nanostructures [35]. ‘Polymerosomes’ 
are special type of nanomaterials having immense potential in waste 
water treatment. Polymerosomes are synthetic vesicles which are 
self assembles tiny hollow spheres composed of block copolymeric 
amphiphiles, synthesized by self assembly technique. The presence 
of both hydrophilic and hydrophobic groups in polymerosomes 
creates layers along with an aqueous core in the copolymers which 
help in retaining variety of guest molecules at different pH values 
[36]. Hence, these hyper branched nano-sized copolymers are good 
promising tools for removal of organic wastes from water bodies.

Methodology for Water Treatment 
This section describes most promising technologies of waste 

water treatment involving nanomaterials as key component. 

Adsorption is one of the most well practiced techniques for 
water treatment. Use of nanomaterials as adsorbent in treatment of 
waste water is applicable in various forms like catalytic, absorptive, 
catalytic membrane, bioactive nanoparticles, biomemetic membrane, 
polymeric and nano composite membrane, thin film composite 
membrane etc. Various organic chemicals are absorbed more 
efficiently by using carbon nano tubes (CNT) than activated carbon 
[37]. Organic compounds which have carboxylic, hydroxyl, amide 
functional groups also form hydrogen bond with the graphitic CNT 
surface which donates electrons [38]. CNT have high adsorption 
competence for metal ions [39-41] and therefore is a good alternative 
for activated carbon. Nanoscale metal oxides like iron oxides like 
ferrous oxide, TiO2, Al2O3 are effective, low cost adsorbants for 
heavy metals and radio nucleides [42-44]. Dendrimers (polymeric 
nanomaterials) are capable of removing both organics and heavy 
metals [45]. Nano-adsorbents are used as powder, beads or porous 
granules loaded with nano-adsorbants.

Nanomembranes are a particular kind of membranes modified 
with nanofibres which utilized to remove microsize particles from 
aqueous phase with a high elimination rate with reduced fouling 
propensity [46]. Such membranes are used as pretreatment method 
used proceeding to ultrafiltration or reverse osmosis. Large number 
of studies on membrane nanotechnology has focused on creating 
multifunction membrane by adding nanomaterials into polymeric 
or inorganic membranes known as nanocomposite membranes. The 
addition of metal oxide nanoparticles including alumina, silica, zeolite 
and TiO2 to polymeric ultra filtration membranes has been shown 
to amplified membrane surface hydrophilicity, water permeability, 
or fouling resistance [47]. Inorganic membranes containing nano-
TiO2 or modified nanoTiO2 have been used effectively for reductive 
degradation of contaminants, particularly chlorinated compounds 
[8,48]. The use of TiO2 immobilized on a polyethylene support and a 
TiO2 slurry in combination with polymeric membranes has proved very 
effective for degradation of 1,2-dichlorobenzene and pharmaceuticals, 
respectively [49,50]. Nanostructured composite of TiO2 and Fe2O3 
incorporated into ultrafiltration membranes successfully reduced 
the fouling burden and improved the permeate flux [51]. Alumina-
zirconia-titania ceramic membrane coated with Fe2O3 nanoparticles 
was observed to reduce the dissolved organic carbon better than the 
uncoated membrane enhancing the degradation of natural organic 
matter [52,53]. Finally, ceramic composite membranes of TiO2 
and CNTs have resulted in enhanced membrane permeability and 
photocatalytic activity [54-56]. Antimicrobial nanomaterials such as 
nanosilver are doped or surface grafted on polymeric membranes to 
inhibit bacterial attachment and biofilm formation on the membrane 
surface [57,58]. It also inactivates viruses and can reduce membrane 
bio-fouling [59]. Developments of thin film nanomaterial membrane 
mainly focus on incorporating nanomaterials into the active layer of 
thin film composite membrane via doping in the casting solutions 
or surface modification. The effect of nanoparticles on membrane 
permeability and selectivity depends on the variety, dimension and 
quantity of nanoparticles added [60,61]. Many biological inspired 
membranes are highly selective and permeable [62]. The use of 
nanofibrous composites membranes for water/wastewater treatment 
is very limited and a stand-alone system (Figure 2) is proposed for 
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removing all types of contaminants including bacteria/viruses, heavy 
metals and ions, and complex organic compounds.

Nanocatalysts are also effective in removing contaminants from 
waster screams due to unique physical and chemical characteristics. 
Due to high surface to volume ratio and shape dependent properties, 
nano catalytic substances like zero-valent metal, semiconductor 
materials and bimetallic nanoparticles are widely used in water 
treatment as they increase the catalytic activity at the surface. 
It enhances the reactivity and degradation of environmental 
contaminants such as organochlorine based pesticides, halogenated 
herbicides, azo dyes, polychlorinated biphenyls and nitro aromatics 
[63]. The catalytic activity of nanomaterials and reusability of this 
particle (silver nanocatalyst, N-doped TiO2 and ZrO2 nanoparticles) 
has been proved on laboratory scale for various contaminants with 
efficient removal of microbial contaminants in water [64]. 

Bioactive nanoparticles are also important class of materials 
having immense potential for waste water treatment. Silver 
nanoparticles can be biosynthesized extracellularly by bacteria 
Bacillus cereus which is having very high antibacterial potential. This 
strain was exposed to different concentrations of silver salt AgNO3 
and studied with the help of various analytical instruments like 
High Resolution Transmission Electron Micrography (HRTEM), 
X-ray diffraction (XRD), and Energy Dispersive spectroscopy (EDS). 
Prakash et al. [65] have reported MgO nanoparticles and Cellulose 
acetate CA fibers embedded with Ag nanoparticles effective against 
both positive and negative bacteria and spores. 

Conclusion 
While nanotechnology is considered to be the new era by many 

scientists, information related to the subject remains largely unknown 
to many of the folk’s because of novelty of the technology. In future the 

nano materials will be used in large amount for the purpose of water 
purification and treatment. Therefore this eureka will be considered as 
great milestone in the 21st century. MNPs (metal nanoparticles) were 
powerful tools to remove heavy metal from drinking water with high 
efficiency and low significant toxicity. MNPs are therefore suitable 
for the removal of various heavy metals like Arsenic (As). Compared 
to other disinfection technologies, MNPs disinfection is cost-effective 
and easy to operate, with bright future for its engineering application. 
The features of MNPs address the challenges of drinking water safety 
in rural areas of developing countries where are lack of resources 
and appropriate technology in water treatment. It is particularly 
suitable for small scale water treatment systems serving a population 
of between 500-1000 people and is an ideal emerging technology to 
provide clean water to these areas. 
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