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Microbial pathogens have evolved a variety of strategies to 
promote their own survival and utilize different tactics to divert 
host immune responses. Many types ofpathogenic bacteria employ 
unique secretion systems through which they deliver novel 
‘weapons’, or virulence factorsinto eukaryotic cells, which promote 
bacteriainvasion and/orperturb diverse host cell functionsto facilitate 
bacterial colonization.

Among the cellular host proteins that are targeted by invading 
pathogens, Crk adaptor proteins, which linkdifferent surface 
receptors to their correspondingsignaling pathways, appear to be 
preferred targets. Crk was discovered in the late 1980s as a chicken 
retroviral oncogene product that consists of SH2 and SH3 domains 
[1,2]. It was later found to have three mammalian homologs: CrkI 
and CrkII, which are alternative spliced forms of a single gene, and 
CrkL, which is encoded by a separate gene [3,4]. The Crk proteins 
are involved in the regulation of many different cellular activities, 
including gene expression, cell adhesion, migration, proliferation 
and differentiation, as well as cell transformation and apoptosis 
[5]. Furthermore, Crk proteins integrate signalsthat are critical for 
immune cell functions [6,7], and are therefore potential drug targets 
in maladies caused by cancer, autoimmunity and infection diseases 
[8,9].

Recent studies suggested that Crk adaptor proteins contribute to 
bacterial and perhaps also viral pathogenesis by promoting pathogen 
entry into cells and byserving as targets forvirulence factors that 
subvert the cellular machinery to create a microenvironment which is 
beneficial for the pathogen. 

Involvement of Crk adaptor proteins in bacterial entry into 
mammalian cells was first noted in Yersinia pseudotuberculosis 
infection of human epithelial cells [10,11]. Yersinia is a Gram-
negative bacterium with a type-III secretion system (T3SS), and its 
intracellular invasion involves an interaction between the bacterial 
protein, invasin, and the host cell β1 integrin receptor, which triggers 
the cellular machinery that supports Yersiniauptake. Invasin binding 
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to the β1 integrin initiates a host response leading to activation of 
FAK (focal adhesion kinase)- and/or Src protein tyrosine kinases 
[12,13]. and phosphorylation of p130Cas (Crk-associated substrate, 
130kDa). A subsequent interaction between phospho-p130Cas 
and Crk is required for further activation of the GTP-binding 
protein, Rac1, which promotes actin rearrangement and bacterial 
internalization. Cell transfection with CrkII point mutants in the 
SH2 (R38V) or SH3N(W169L) domains, which are unable to interact 
with p130Cas or DOCK180(dedicator of cytokinesis, 180kDa; an 
upstream regulator of Rac1), respectively, resulted in decreased 
bacterial uptake, demonstrating the critical role of CrkII and its SH2-
and SH3N-domain-binding partners in the bacterial internalization 
process.

Crk proteins are also required forcell infection by Shigella 
flexneri, another intracellular Gram-negative bacterium with aT3SS 
[14]. Entry of S. flexneri into mammalian cells is made possibleby 
binding of theIpaA and IpaB bacterial proteinstothe host cell 
integrin α5β1 and CD44 surface receptors, respectively, which 
establishthe initial contact [15,16]. A key event in the early phase of 
the infection is the induction of actin polymerization and cytoskeletal 
reorganization at the bacteria-host cell contact area, which promotes 
bacterial internalization. This step involves Abl/Arg-mediated 
tyrosine phosphorylation of CrkII, which in turn activates the Rho 
family GTPases, Cdc42 and Rac, leading to actin polymerization and 
rearrangement of the cytoskeleton [17]. Phosphorylation of CrkII 
at tyrosine 221 (Y221) is an essential event during cell infection by 
S. flexneri, and is essential for bacterial invasion. Overexpression of 
aphosphorylation-deficient mutant of CrkII, in which tyrosine 221 is 
replaced by phenylalanine (Crk Y221F), inhibits bacterial entry into 
the cells [14].

Additional Crk-regulated host cell proteins that are involved 
in non-phagocytic cell invasion by S. flexneri are cortactin and 
Unc119 [18,19]. Cortactin is involved inS. flexneri entry into 
epithelial cellsthrough itsbinding to and cooperation with the Crk 
protein, thuspromoting actin polymerization and cytoskeletal 
rearrangement [18]. Unc119 acts asan upstream negative regulator 
of Abl, thereforeinhibits Abl-mediated CrkII phosphorylation at 
tyrosine 221, and consequently, reduces S. flexneriintakebycells. In 
agreement, knockdownof Unc119 enhanced bacterial invasion, while 
cell treatment with a cell permeable Unc119 protein lead to a partial 
inhibition of bacterial internalization [19].

While Pseudomonas aeruginosa [20,21]. and Salmonella enteric 
[22]. possess distinct T3SSsand utilize differentarray of virulence 
factors topromotecell invasion, they subvert common host signaling 
pathwaysto supporttheiruptake. This twopathogensgain entry into 
nonphagocytic cells by utilizing the Abl-dependent Crk-mediated 
signaling pathways that manipulate the host cell actin assembly and 
promote cytoskeleton rearrangement. Furthermore, the P. aeruginosa 
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virulence factor, ExoT, can disrupt host cell signaling pathways by 
ADP-ribosylating CrkI and CrkII at Arg20 within the SH2 domain, 
thereby interfering with Crk binding to p130Cas and modulating 
p130Cas-dependent signaling events. 

A somewhat different mechanism for cell invasion has been 
proposed forthe intracellular Gram-positive bacteria, Listeria 
monocytogenes, [23,24]. This bacterium possesses a surface 
protein,termed INIB, which interacts with a host cell surface 
receptor tyrosine kinase, termed Met.Binding of INIBactivates the 
Met catalytic domain, which stimulates a CrkII and Gab1 adaptor 
protein-regulated signal transduction pathways.Consequently, 
phosphoinositides 3-kinase (PI-3K) undergoes activation and 
promotesadditional events that support bacterial entry into the cells. 
Recently it was shown that the SH3C domain of CrkII is required 
for activation of PI-3K. This activation promotes changes in actin 
polymerization necessary for bacterial entry. The finding that the 
Crk-SH3C domain is essential for bacterial uptake is surprising, since 
in contrast to the Crk-SH2 and SH3N domain, Crk-SH3C has no 
known binding partners, and is assumed to function as an integral 
regulatory region. 

A different and novel strategyofinteraction with host cells has 
been adopted by the Gram-negative bacteria Helicobacter pylori 
[25,26], which colonize the gastric epithelia. H. pylorimediates 
persistent infection by inhibiting cell apoptosis, thereby preventing 
the rapid epithelial cell turnover that facilitates bacterial clearance. 
This mechanism is made possible by the H. pylori virulence protein, 
CagA, which is delivered into the host cellswhere itupregulates 
survival mechanisms and induces anti-apoptotic pathways. The 
molecular basis of this process involves binding of CagA to CrkI, 
CrkII and CrkL adaptor proteins, leading to induction of signaling 
events that activate pro-survival effector molecules, including the 
MEK/ERK cascade and the anti-apoptotic protein MCL1 (myeloid 
cell leukemia sequence 1).

It is interesting to note that the Gram-negative bacteria, 
Escherichia coli, also utilize aT3SS to deliver virulence factors that 
ultimately modify the Crk signaling pathway. While CrkII was found 
to be selectively recruited to the pedestal of the enteropathogenicE. 
coli (EPEC) and not to that of the enterohemorrhagicE. Coli (EHEC) 
[27], recent studies revealed that EHEC infection coincide with 
intracellular delivery of a virulence protein NleH1, which physically 
interacts with CrkL [28]. Binding of CrkL to IKKβandinteractionwith 
NleH1promotes NleH1 association with the ribosomal protein S3 
(RPS3), which leads to modulation ofthe RPS3/NFκB signaling 
pathway? While the exact effect of NleH1 in the host cell is not fully 
clear, it is assumed to promote bacterial survival by inhibiting innate 
immune responses. 

A recent study demonstrated that Chlamydia trachomatis, a 
Gram-negative obligate intracellular bacteria and the causative agent 
of trachoma and sexually transmitted diseases, also engage CrkI and 
CrkII to promotebacterial recruitment to nascent inclusions,and 
thereby alteringinnate anti-Chlamydia immune mechanisms 
[29]. This activity is carried out by TepP (translocated early 
phosphoprotein), which is translocated into the host cells during the 
early phase of cell entry. Tep Pundergoes pho sphorylation by a host 
cell kinase andacts as a bacterial linker that associates with host cell 

CrkI/CrkII to alter the regulation of innate immune response genes. 

Viruses also utilize a variety of strategies to evade host cells and/
or neutralize anti-viral responses. The 1918 Spanish influenza virus 
and the avian influenza. A viruseswere found to utilize Crk-regulated 
signaling pathways to promote intracellular viral replication [30-32]. 
These viruses utilize their NS1 (nonstructural protein 1) virulence 
factor, which possesses a proline-rich SH3-binding motif, to bindCrkI/
II and CrkL proteins with high affinity,in order todownregulate JNK-
ATF2 signaling. The JNK-ATF2 pathway suppresses apoptosis, which 
is detrimental to viral proliferation, and is therefore inhibited by the 
virus. Knock-down of the host cell CrkI/II and CrkL proteins have 
shown to significantly impair viral propagation, indicating that NS1-
Crk interaction is critical for viral replication [30].

Altogether, the studiesdescribed here demonstrate that Crk 
adaptor proteins are essential for cell infection and propagation of 
a variety of pathogens. Exogenous manipulation of Crk protein 
expression or function might therefore serve as potential strategies for 
inhibition of pathogen replication and survival. Furthermore,better 
understanding of the mechanisms by which different virulence 
factors hijack cellular effector molecules and signaling pathways may 
provide crucial information for the design of drugs that ban pathogen 
propagation by divertingdifferent cellular machineries.
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