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or chemokines is accompanied by M1-skewed microglial activation. 
Additionally, CCL2 levels are known to be associated with cognitive 
decline during the early stage of AD patients [5-8]. These findings 
are reproduced in several AD mouse models such as the APP+PS1 
mouse [9], which shows a distinctive age-dependent shift from M2 
(anti-inflammatory) to M1 (pro-inflammatory) mononuclear cell 
activation in the hippocampus. 

Taken together, CCL2 and its receptor CCR2 should be important 
targets in the development of treatments to fight or prevent acute 
and chronic neurological disorders in which neuroinflammation is a 
pathological key event.
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A subset of infiltrating peripheral monocytes is known to be 
recruited to CNS by monocyte chemoattractant protein-1 (MCP-1/
CCL2) signaling in various neurological diseases. We have recently 
reported striking switch in the activation phenotype and population 
of mononuclear phagocytes from resident microglia to infiltrating 
macrophages in neuronal cell death induced CCL2 dependent 
manner in a mouse model which overexpressed Tau-Tubulin 
Kinase-1 (TTBK1) [1].Although TTBK1 up regulation is detected in 
brains of human Alzheimer’s disease (AD), this dramatic conversion 
of the cell population from microglia to pro-inflammatory M1-
skewed infiltrating monocytes are well characterized in the patients 
with acute stroke. In this short communication, I introduce the role 
of CCL2 in macrophage filtration to affected region of the acute is 
chemic stroke and AD brain.

In our TTBK1 overexpression mice, danger-associated molecular 
pattern molecules (DAMPs, such as ATP, DNA, S100, and chromatin-
associated molecules released from injured neurons) activate pro-
inflammatory M1-like innate immunity response of mononuclear 
phagocytes and CCL2 production. This leads to the recruitment 
of peripheral macrophages into the affected brain region and 
acceleration of neuronal cell death via bystander killing of neurons.
Infiltrating macrophages are known to serve as a key mediator of the 
innate immune response by their expression of Toll-like receptors 
(TLRs) and activation of TLRs of macrophages leads to the secretion 
of pro-inflammatory cytokines. In post-ischemic inflammation, the 
central event is also recruitment of leukocytes, first neutrophils, 
and then an influx of cells of the monocyte/macrophage lineage. 
Experimentally, CCL2 overexpression increases the infarct volume 
and monocytes and macrophages invasion of the ischemic area [2]. 
In contrast, CCL2-deficient mice are resistant to permanent middle 
cerebral artery occlusion [3] and the expression by gene transfer of 
dominant negative CCL2 in the post-ischemic period in hypertensive 
rats reduced the infarct volume and leukocyte infiltration [4]. In the 
human AD brain, increased expression of pro-inflammatory cytokines 
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