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Abstract

An inositol stereoisomer, scyllo-inositol (SI), has been regarded as a 
promising therapeutic agent for Alzheimer’s disease (AD), because it is an orally 
available natural compound that penetrates into the brain and coats the surface 
of amyloid β-proteins (Aβ) to inhibit their lateral stacking into toxic amyloid fibrils. 
SI is relatively rare in nature, and we developed a Bacillus subtilis cell factory for 
the efficient production of SI from abundant myo-inositol (MI).

Keywords: Alzheimer’s disease; Amyloid β-protein; Bacillus subtilis; scyllo-
inositol
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Introduction
Alzheimer’s disease (AD) is the most common and problematic 

form of dementia. In 2010, 35 million people worldwide suffered from 
AD, and the number is expected to rise to 115 million in 2050 [1]. 
Currently, there is no known cure for AD, but only a few medications 
that address the symptoms of the disease.

On the basis of the amyloid hypothesis, the initial cause of the 
disease is believed to be abnormal aggregation of amyloid β-protein 
(Aβ) into fibrillar polymers, which are hallmark lesions in the 
AD brain [2]. Although it is not yet precisely elucidated how the 
aggregation of Aβ is initiated [3,4], the excessive Aβ aggregation 
disrupts the calcium ion homeostasis in neurons, which finally 
induces apoptosis [5]. Aβ aggregates build up in the mitochondria 
and inhibit enzymes metabolizing glucose in neurons [6]. Therefore, 
AD has been regarded as a simple neurodegenerative disease. 
However, accumulating evidence implies that the development of the 
disease may involve more intricate events. For instance, Aβ fibrils in 
AD brain tissues present structural variations that may correlate with 
phenotypic variations of the disease [7]. In addition, the sustained 
formation of Aβ aggregates causes chronic activation of the innate 
immune system and disturbs microglial clearance functions [8].

On the other hand, another protein, named tau, is also involved 
in the disease development [9]. The tau proteins form neurofibrillary 
tangles inside nerve cells [10] that disturb the cytoskeleton, and thus, 
the transport system required for biochemical communication among 
neurons [11,12]. Furthermore, there are a number of hypotheses that 
attempt to explain the cause of the disease by involving other factors, 
including herpes simplex virus type 1 [13], cellular homeostasis 
of ionic copper, iron, zinc, and aluminum [14,15], extremely low 
frequency electromagnetic fields [16], smoking [17], age-related 
myelin breakdown [18-20], oxidative stress [21-23], and air pollution 
[24]. In any case, it is true that all the pathogenic events of the disease 
are tightly connected to the aggregation of Aβ [25-27]. Therefore, 
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for any therapy for AD to show promise, aggregation of Aβ must be 
blocked earlier, before neurodegeneration and brain atrophy develop.

Accordingly, various chemical inhibitors targeting Aβ aggregation 
have been developed, including amyloid-binding dyes [28], catechols 
[29], curcumin [30], flavonoids [31], and polyphenols [32,33]. 
Some of these compounds originate in foods, and can be generally 
regarded as safe. Such inhibitors, including scyllo-inositol (SI) [34], 
(−)-epigallocatechin-3-gallate (EGCG) [35], and resveratrol [32] 
were shown to stabilize nontoxic oligomers of Aβ, and some of them 
are already in clinical or preclinical trials [36]. However, some of the 
preemptive clinical trials were not concluded successfully, which 
indicates that we need to understand the molecular mechanisms of 
the disease in depth and to devise improved ways of designing trials 
to accurately evaluate the compounds [37].

In this mini review, we focus on SI and summarize the current 
status of the studies on its mechanism of action on Aβ, effectiveness 
in animal models, ongoing clinical trials, and the efficient production 
of the compound itself.

What is SI?
Inositol stands for a group of compounds of a six-fold alcohol of 

cyclohexane. The epimerization of the six hydroxyl groups generates 
nine stereoisomers. myo-Inositol (MI) is the most prominent 
stereoisomer in nature and plays an important role as the structural 
basis for a number of secondary messengers that are various inositol 
phosphates. In addition, it serves as an important component of the 
membrane structural phospholipids, phosphatidylinositol. On the 
other hand, SI is another stereoisomer that is relatively rare in nature 
but has been regarded as a possible therapeutic agent for AD, and 
has received a fast-track designation from the US Food and Drug 
Administration for the treatment of AD. SI is a naturally occurring 
molecule that readily crosses the blood–brain barrier. It was shown 
that the human brain had the highest concentration of inositol in 
the body, with approximately 5mM MI and 0.5mM SI [38]. The 
concentration of SI in the brain was elevated in patients with AD 
[39]. In addition, high cerebral SI was proposed as a new marker of 
brain metabolism disturbances induced by chronic alcoholism [40]. 
Furthermore, a higher concentration of SI was found in the normal 
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aging human brain [41]. These facts imply that cerebral SI levels may 
be controlled in response to functional defects in the brain caused 
by diseases and aging. Internal SI may be derived from MI through 
possible inter-conversion between the two inositol stereoisomer’s, 
which was suggested in a previous study where SI was administered 
in mice [42].

How does SI work?
In 2000, SI was first reported to stabilize the non-toxic oligomers 

of Aβ and to inhibit their toxic aggregation [34]. To elucidate the 
mechanism by which SI blocks the self-aggregation of Aβ, molecular 
dynamics simulations of the interaction between SI and simple 
peptide models were conducted. It was observed that SI was able to 
bind to the surface of Aβ protofibrils to prevent their aggregation but 
could not break up the preformed aggregates [43]. In addition, SI 
preferentially bound to the β-sheet-containing Aβ protofibrils with 
affinities of 0.2–0.5mM commensurate with its in vitro inhibitory 
concentrations, and exhibited a higher binding specificity for 
phenylalanine-lined grooves on the Aβ protofibril surface, indicating 
that SI obviously coats the surface of Aβ protofibrils and disrupts their 
stacking into fibrillar aggregates [44]. A series of SI derivatives were 
synthesized and the effects of these compounds were investigated to 
reveal that all six hydroxyl groups of SI were involved in the complete 
inhibition of the fibrillar aggregation of Aβ [45].

Studies with animal models and clinical trials
SI is an orally available natural product that penetrates into the 

brain in vivo, and dose-dependently rescues the memory impairment 
produced by cerebroventricular injection of soluble Aβ in rats [46]. 
SI blocked the development of aggregation of Aβ in the brain of 
transgenic AD mice, and was able to reverse defect of memory and 
alleviated other symptoms [47,48]. There is a patent that claims the 
use of SI for treating AD [49], and some clinical investigations of 
orally-administered SI have been conducted. A phase 2 clinical study 
was recently conducted on 353 patients with mild to moderate AD 
for 18 months [50]. The clinical trial helped establish its safety profile, 
but the higher dose groups (1000 and 2000 mg dosed twice daily) 
showed greater rates of adverse events, including 9 deaths. Therefore, 
only the lower dose (250 mg twice daily) will be continued further, 
although the decision may reduce the ability of the study to establish 
the potential role of SI in the treatment of serious cases [51].

Efficient production of SI
As described above, SI is a promising therapeutic agent for 

AD. However, it is relatively rare in nature, and thus, is not 
sufficient to satisfy possible demand. At present, SI is produced by 
an expensive two-step enzymatic conversion [52] from MI, which 
(including its derivatives including phytic acid, as described below) 
is provided by fruits, beans, grains, and nuts [53]. To enable a more 
efficient production of SI, we devised a bacterial cell factory for the 
bioconversion of MI into SI.

Bacillus subtilis has the ability to metabolize both MI and SI, 
and the complete gene set necessary for their utilization has been 
characterized [54]. The iolABCDEFGHIJ operon encodes enzymes 
involved in multiple steps of the inositol metabolism, and the 
transcription of the operon is regulated by the IolR transcriptional 
repressor [55]. In the first step, MI is converted to scyllo-inosose 

by the IolG enzyme. B. subtilis possesses two additional inositol 
dehydrogenases, IolX and IolW, both of which act specifically on 
SI to convert it to scyllo-inosose [56]. IolX plays a major role in SI 
catabolism, whereas IolW efficiently reduces scyllo-inosose into SI. 
scyllo-Inosose is metabolized sequentially in multiple steps involving 
the IolE, IolD, IolB, IolC, IolJ, and IolA enzymes to give common 
intermediates, dihydroxyacetone phosphate and acetyl-CoA [57]. 
In the B. subtilis chromosome, we deleted all the “useless” genes 
including iolABCDEFHIJ, iolX, and iolR and overexpressed iolG and 
iolW under the control of a strong and constitutively active promoter 
to establish the cell factory with a complete bioconversion of 10 g/L 
MI into the same amount of SI secreted into the culture medium 
within 48 h [58].

Phytic acid (MI-1,2,3,4,5,6-hexaphosphate) is the principal 
storage form of phosphorus in plants, in particular bran and seeds. 
Phytases are a class of phosphatases that catalyze the hydrolysis of 
phytic acid to liberate MI and phosphate [59-61]. Because B. subtilis 
has a high ability to secrete enzymes [62,63], the cell factory could be 
modified to secrete phytases, and SI may be produced directly from 
agricultural waste materials such as rice bran, rich in phytic acid.

MI is synthesized from glucose-6-phosphate in two steps in many 
organisms [64]. In B. subtilis, glucose-6-phosphate is the starting 
compound of glycolysis, appearing when glucose is incorporated into 
the cell via the phosphotransferase system [65]. Glucose-6-phosphate 
is converted by inositol-3-phosphate synthase to MI 1-phosphate, 
which is then dephosphorylated by inositol monophosphatase to yield 
MI. Once we could manipulate the two enzymes function efficiently 
in B. subtilis, a novel cell factory could be devised to produce SI from 
glucose.

Conclusion
SI is a promising therapeutic agent for AD because of its ability to 

inhibit aggregation of Aβ in the brain. SI is relatively rare in nature, 
and we established the B. subtilis cell factory for production of SI 
from MI, which allowed 100% conversion of 10 g/L MI into the same 
amount of SI. By applying our B. subtilis cell factory concept, SI may 
be produced from raw and cheap materials in the future.
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