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Abstract

Goal of the study was to evaluate 18F-(8-hydroxy) quinoline (18F-HOQ) by 
PET in transgenic (Tg) animal models of Alzheimer’s disease (AD). Five groups 
of mice (n=4 per group) were used; control (WT, 12 mo), APP/PS Tg mice (4, 6, 
and 12 mo) and APOE4 Tg mice (12 mo). 18F-HOQ was prepared as previously 
reported by us. Animals were imaged in a PET/CT scanner for 30 minutes 
immediately after intravenous injection of the tracer and SUV values for various 
brain regions determined. After imaging, animal brain sections were stained and 
amyloid plaque burden measured. Cortex, olfactory bulbs and hippocampus 
had higher activity compared to cerebellum and were significantly higher 
(p<0.05) in APP/PS1 Tg mice compared to WT or APOE4 mice. Only APP/PS1 
mice brain sections were positive for Aβ. Tracer uptake by PET correlated with 
plaque density measured by histopathology. Plaque density increased with age. 
Differences in brain uptake by PET could be observed at an early age (4 mo) 
only in APP/PS1 mice. F-18 HOQ may be useful in monitoring the progression 
of Aβ plaque deposition in suitable AD animal models by PET and in assessing 
efficacy of therapeutic agents aimed at reduction of amyloid plaque burden.

Keywords: Alzheimer’s disease; Transgenic animals; Plaques; PET/CT 
imaging

Introduction
Alzheimer’s disease (AD) is the most common cause of dementia. 

AD is a neurodegenerative disorder of enormous socioeconomic 
burden [1]. It represents auto-inflammatory reaction resulting 
in the activation of the immune system in response to aberrant 
proteins located in the brain and leading to neurotoxicity [2]. 
Neurodegenerative disorders are defined as progressive loss of 
neurons. The pathologic hallmarks of AD are extracellular beta 
amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) 
[3]. The amyloid cascade hypothesis has explained the mechanism 
of the disease based on the presence and the deposition of the 
amyloid plaques [4]. The abnormal function of these intracellular and 
extracellular proteins results in death of neurons [5]. Noninvasive 
detection of deposition of Aβ plaques is important in understanding 
the pathology of early AD. The development of radiopharmaceuticals 
for medical imaging with positron emission tomography (PET) may 
provide an ideal non-invasive methodology to enable early diagnosis, 
monitor disease progression, differential diagnosis, and evaluate 
drug therapies of patients with AD and related dementias [6-8]. A 
number of recent articles have reviewed the progress in development 
of imaging agents targeting beta amyloid [9-13].

A number of molecules including derivatives of Thioflavin and 
Congo red, labeled with carbon-11 (11C; t1/2 = 20.4 min) and fluorine-18 
(18F; t½ = 109.7 min) have been synthesized and investigated for 
imaging amyloid plaques and tangles with promising results [14-
18]. Fluorine-18 labeled agents are more desirable than those labeled 
with carbon-11 because of relatively longer half-life affording longer 
radio-synthesis, imaging protocols and option for supply by a 
commercial manufacturer to imaging sites without a cyclotron and/
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or radiochemistry laboratories. Majority of radiotracers for imaging 
AD are based on Congo red or thioflavin derivatives with affinity 
for amyloid Aβ plaque deposits. The most widely used radiotracer 
for imaging AD is a labeled thioflavin analog, N-methyl-[11C]2-
(4’-methylaminophenyl)-6-hydroxybenzothiazole (referred to as 
Pittsburgh Compound B or PiB), [15, 17] with recent efforts directed 
towards labeled styrylpyridine and stilbene derivatives [18].

Among the transitional elements iron, zinc and copper are essential 
to human health. However they also have shown to be involved in 
AD. Copper overload has been associated with mental decline [19] 
and particularly AD development [20, 21]. As the most abundant 
trace metal in the brain, zinc is tightly associated with numerous 
proteins. Role of zinc and copper in neurodegenerative process have 
been extensively reviewed [22, 23]. Deposition of amyloid plaque 
protein is intimately associated with the increased levels of transition 
metal ions such as Cu2+ and Zn2+ [24-30]. High concentration of zinc 
(up to 1 mM) have been found within amyloid plaques [24], which 
is thought to have been released from glutamatergic synapses [25]. 
Hydroxyquinoline (HOQ) and its derivatives are under investigation 
for therapeutic applications based on extraction of metal ions and 
disaggregation of plaque [31-38]. Kinetically slow re-extraction 
of Zn could be useful potentially in imaging amyloid plaque using 
transition metal chelating agents. Opazo et al utilized this strategy 
in exploring radio iodinated clioquinol (CQ) as a biomarker for β–
amyloid in human subjects [39]. Using autoradiography imaging, 125I-
CQ was demonstrated to be specific for imaging β–amyloid plaque 
in histological samples. However, a large portion of administered 
123I-CQ was taken up by liver and metabolized and less than 1% of 
this activity was taken up by brain. Further, it can undergo facile de–
iodination in vivo. Thus, [123/124I] CQ might not be ideal for diagnostic 



Austin J Clin Neurol 2(8): id1065 (2015)  - Page - 02

Kulkarni PV Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

imaging of AD. We designed polybutylcyanoacrylate nanoparticles 
with incorporated radio ligands and amyloid affinity agents that are 
attracted to Aβ protein. We evaluated nanoparticulate radio labeled 
quinolone to detect amyloid plaques in mouse models of AD [40]. 

A small, blood brain barrier (BBB) permeating, stable and non–
polar 18F labeled HOQ that forms a rapid and reversible ternary 
complex with Zn–Aβ fibrils could be useful for imaging amyloid 
plaques with high specificity. Previously we reported the synthesis 
of 18F–2–fluoro–8–hydroxy quinoline (18F-HOQ) and preliminary 
evaluation in imaging of AD plaques in APP/PS1 transgenic mice 
[41, 42]. Here we report the evaluation the tracer in PET imaging of 
APP/PS1 and APOE4 transgenic mice of different ages, also assessed 
the possibility of analyzing the regional tracer uptake and washout 
kinetics in mice brain similar to other plaque imaging agents in 
human brain. Uptake of tracer in mice brain was measured by PET/
CT imaging and correlated with the amyloid burden by histology. 

Although current transgenic (Tg) animal models obviously do 
not manifest all clinical and pathological aspects of AD, nonetheless 
they are useful in testing of novel intervention strategies and imaging 
agents.

Methods
Animal models

There are number of animal models of AD and may not truly 
represent the human AD. However, they are valuable tools in 
evaluating experimental imaging and therapeutic agents. The animal 
experimental protocol was reviewed and approved by the Institutional 
Animal Care and Use Committee (IACUC) of UT Southwestern 
Medical Center. Here in our study we used double (APP/PS1) double 
transgenic and APOE4 transgenic mice in evaluating fluorine-18 
labeled quinolone. Double transgenic mice with double mutation 
(APP/PS1) for Alzheimer’s disease were used (Strain: B6C3–Tg) 
(APPswe, PSEN1dE9)85Dbo/J). This particular model corresponds 
to a form of early onset of disease and expresses mutant human 
presenalin 1 (DeltaE9) and a chimeric mouse/human amyloid 
precursor protein (APPswe) and APOE4 Tg mice representing late 
onset of AD [43-45]. APP transgenic mice were obtained from Dr. Qu 
laboratory at UT Southwestern and have been well characterized by 
gene typing [46].Three groups of mice (n=4 per group) were used for 
PET imaging studies: 1. control (WT), 2. Tg mice, APP/PS1, (strain 
B6C3-Tg, APPswe, PSEN1 dE9) and 3. APOE4 Tg mice (Taconic, 
#1549, C57BL/6), ages 11-12 months. Frozen brain sections of APP/
PS1 Tg and control (WT) mice were incubated with 18F-HOQ (50μCi/
mL), washed and exposed to Phosphor Imaging Plate® for 2 h and 
images quantified as digital light units (DLU). Autoradiography, 
histology and in vitro studies were reported in details somewhere else 
[42]. 

Small animal PET/CT imaging 
Small animal PET/CT imaging studies were performed using a 

Siemens Inveon® Micro PET/CT system (Siemens Medical Solutions 
Inc., Knoxville, TN, USA). Ten minutes prior to imaging, the animals 
were anesthetized using 3% Isoflurane at room temperature until 
stable vital signs were established. Once the animal was sedated, 
the animal was placed onto the imaging bed under 2% Isoflurane 
anesthesia for the duration of the imaging. The micro CT imaging 

was acquired at 80kV and 500 µA with a focal spot of 58µm. The 
PET images were acquired directly following the acquisition of CT 
data. Radiotracer (50-90 µCi) was injected intravenously via the tail 
vein.  Immediately following the injection, a 20-30 minute dynamic 
scan was performed. PET images were reconstructed using Fourier 
Rebinning and Ordered Subsets Expectation Maximization 3D 
algorithm with dynamic framing every 60 seconds. Reconstructed 
images were fused and analyzed using Inveon® Research Workplace 
(IRW) software.  

F-18 quinoline (18F-HOQ) was prepared as previously reported 
by us; reacting 8-benzyloxy-2-chloroquinoline with K222 and F-18 
in DMSO and purified by HPLC [5, 6]. Tg AD and WT mice (n=4 
per group), were scanned in a Siemens Inveon® PET/CT scanner 
for 30 minutes immediately following i.v. injection. SUV values for 
various brain regions were determined using AMIDE® software and 
an MRI 3D mouse brain atlas. After imaging studies, animal brains 
were taken out, fixed and brain tissue sections were stained with an 
antibody specific to Aβ and plaque burden measured with Image J ® 
software.

PET/CT analysis using MRI brain atlas
PET/CT images analyzed using AMIDE software and a 3D 

mouse brain atlas. PET images (voxel volume: 0.9×0.9×0.8 mm) 
were overlaid on the CT images (voxel volume: 0.2×0.2×0.2 mm). 
The registration of the images was performed by identifying three 
anatomical regions (e.g. heart, kidneys and the brain) on both images. 
The brain region was segmented based on a 3D mouse brain atlas 
(voxel volume: 0.06×0.06×0.06 mm) into distinct areas where the 
plaques are mostly found. 

These areas include olfactory bulb, cerebral cortex, hippocampus 
and to lesser extent cerebellum [14-18]. 3D ROIs were selected to 
cover these regions in each plane including axial, coronal and sagittal 
plane (Figure 1). The activity in each region was quantified using 
standardized uptake value (SUV):

SUV = % ID/g tissue × Ws ÷ 100

Figure 1: CT/MR mouse brain atlas registration. The first row (A) shows 
the 3D ROI of total brain region. The second row (B) shows the 3D ROI of 
hippocampus region. Both regions were selected on the transverse, coronal 
and sagittal planes respectively.
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 Where ID is the injected dose, Ws is the subject weight [19]. 
Time activity curves (TACs) of the brain region were fitted into two 
phase exponential decay equation to calculate the decay parameters 
using MATLAB software.

a * exp (-b * x) + c * exp (-d * x) 

b, fast rate constant, fast half-life (0.693/b)

d, slow rate constant, slow half-life (0.693/d), a and c are 
coefficients  

Statistical analysis
SUV values were normalized to the first time point and area 

under curve (AUC) of the TACs was calculated for AD and control 

mice. Student’s t-test (p=0.05: significant level) was used to compare 
control group to AD group generated by Graph Pad Prism® software.

An Iterative Deconvolution Method for Fast 
Quantitative Image Recovery

A rapidly converging, iterative deconvolution algorithm with 
a novel resolution subsets-based approach (RSEMD) [47] to de-
noise and improve the quality of PET images is used. The RSEMD 
iterates the blurred image with different resolution parameters (to 
maximize SNR) and a corresponding number of iterations for each 
resolution subset (intermediate image after one or more iterations) 
are taken in turn. In this case the total number of iterations after 
all of the resolution subsets are employed is much less compared 

Figure 2: Dynamic PET images (1 min/image, 5min-10min) post injection of 18F-HOQshow the differences between brain uptake in 12 months old control (1st row) 
and AD mice (2nd row). The view is coronal section at the level of the hippocampus as indicated in the brain atlas labeled image.

Figure 3: PET images (cumulative images 5min-10min post injection of 18F-HOQ) show the differences between brain uptake in 12 months old control (1st row) and 
AD (2nd row) mice. The view is coronal section at the level of the hippocampus as indicated in the brain atlas labeled image.
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to other methods which use one resolution parameter for multiple 
image updates passed through the data. The reconstruction time with 
RSEMD is improved by a factor of 4-5 compared to other iterative 
reconstruction methods.

Results
Dynamic (1 min/image) PET images (5-10 min. post injection) 

showed that the tracer washout from AD mice brains was slower 
compared to control mice as can be seen qualitatively (Figure 2). Sum 
images (5-10 minutes post injection) showed higher retention of the 
tracer in AD mice brains compared to control mice brains (Figure 3). 
Area under curve of TACs of AD mice (n=4:12 months) showed more 
retention of the activity over 10 min in comparison to the control 
mice (n=3: 12 months) for different regions of the brain including 
olfactory bulb, cerebral cortex, hippocampus and cerebellum (Figure 
4). There was a significant difference between AD and control mice 
(P<0.05) in terms of AUC of different regions. Data are expressed 
as SUV (specific uptake value) normalized to the first time point. 
During the first 2 min, there was a rapid clearance of the compound 
in both (control and AD) mice. However, AD mice brains had slower 
clearance than the control mice. The retention time of the tracer was 
higher for the AD mice in both decay phases (Figure 5).  

The regional analysis of the PET images demonstrated higher 
uptake in the regions associated with the plaques. In addition, 
cerebral regions have more activity than the cerebellum. Dynamic 
PET images demonstrated fast clearance of the compound in the 
normal brain and higher accumulation in the cerebral regions of the 
AD mice than the cerebellum region (Figure 6). Integrated activity (0-
600s) showed more retention of the compound in the AD mice brains 
in comparison to control mice (Figure 6).  

Autoradiography images showed higher uptake for AD brain 
sections in comparison to control. In addition, regional analysis for 
autoradiography demonstrated higher activity for the cortex and 
the cerebellum of AD in comparison to control mice. The results 
reflect similar pattern as observed in the PET imaging (Figure 6). 
Immunohistochemistry results showed variation in the plaques 

density in different regions of AD brain including cerebral cortex, 
hippocampus and the cerebellum. PET imaging showed higher 
uptake, and histology showed higher plaque density in the cerebral 
cortex than the cerebellum (Figure 7). 

18F-HOQ showed high binding affinity for Aβ-Zn aggregates 
(Kd=1.5 nM)( data not shown). Autoradiographic data (digital 
light unit, DLU) correlated with plaque density (Figures 6 and 7). 
Integrated brain activity over 10 min for cortex, olfactory bulbs and 
hippocampus had higher values compared to cerebellum and were 
higher (p<0.05) in APP/PS1 Tg mice compared to WT mice (Figure 
6). There was no difference between APOE4 and control mice. The 
values increased with age in APP/PS1 AD transgenic mice and 
correlated to plaque density [R2=0.88] (Figure 7 and 8).

Discussion
Hydroxy quinoline derivatives are weak chelating agents. They 

bind to transition metals such as zinc, copper and iron without 
resulting in metal depletion [39-42]. Among biologically relevant 
metals in the brain, zinc was found to be the most elevated metal 
in the AD brain mostly in the hippocampus and the cerebral cortex 
[24,39]. This supports the imaging results where the compound 
retention was higher in the cerebral regions in comparison to the 
cerebellum. In addition, normal brain showed some activity retention 
especially in hippocampus and the cortical regions. This finding could 
be related to the fact that most of the cheatable zinc is found in the 
cerebral regions and that very low amount of free zinc is available in 
the cerebellum of normal mice brain. 

Figure 4: Area under the curve (AUC) of TACs for different regions of 
mice brains). Data represent average AUC ± SE. Student’s t-test showed 
significant difference (P<0.05) at different regions. (OB=Olfactory bulb, 
CX=Cortex, HC=Hippocampus, CB=Cerebellum, WT= Wild type).

Figure 5: Time activity curves (TACs) fitting for total brain region. Half-life of 
the compound in both decay phases was shorter in control than in AD mice 
indicating longer retention of the tracer in AD mice.

Figure 6: Correlation between PET and autoradiography imaging: Data 
represent mean AUC of PET images ± SE, and mean digital light unit/mm2± 
SE in the cortex and the cerebellum of AD and control mice. (WT: Wild Type; 
CX: Cortex; HC: Hippocampus; CB: Cerebellum; DLU: Digital Light Unit).
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PET ligands based on Congo red and thioflavine derivatives such 
as Pittsburgh Compound B (11C-PiB) have shown the potential for 
specifically binding amyloid plaques in AD patients with higher 
retention than that in controls, and a good correlation with FDG PET 
[48]. Other agents labeled with C-11 are also reported [49]. 18F labeled 
agents such as 18F-flutemetamol, florbetaben, florbetapir, AZD 4694 
are being developed as 18F has longer half-life (110 min vs. 20 min 

Figure 7: Correlation between histology and PET imaging: Data represent 
mean AUC of PET images ± SE, and mean plaque density unit/mm2± SE 
in the cortex (CX), hippocampus (HC) and the cerebellum (CB) of AD mice.

for 11C) and more convenient for production and transportation 
[50-54]. Neuraceq® (18F-florbetaben) received regulatory approval 
in Europe and USA last year. It is the third amyloid agent approved 
for clinical use in the U.S., in addition to Amyvid® (18F-florbetapir) 
and Vizamyl® (18F-flutemetamol). A positive beta-amyloid scan could 
signal Alzheimer’s disease, whereas a negative scan can rule out the 
possibility of Alzheimer’s. Before amyloid imaging, proof of amyloid 
burden in the brain was only possible by autopsy. Although PIB 
and 18F-FDDNP have shown the potential for binding to plaques in 
vitro, they both failed to differentiate between control and AD mice 
in vivo imaging [55]. In the most extensive longitudinal PET study 
conducted in AD (APP-Swe) mouse model using 18F labeled amyloid 
tracer, 18F-florbetaben, Rominger et al, [56] demonstrated that first 
appearance of discernible β-amyloid plaque load at 13 months and a 
progression to 20 mo.

Conclusions
18F-HOQ has high affinity for Aβ-Zn aggregates. Brain uptake by 

autoradiography and PET correlated with plaque density. Plaques 
could be imaged in APP/PS1 Tg mice starting at an early age of 6 
months, but could not be imaged in APOE4 mice even at 12 months. 
Imaging results may depend upon the age of the animals and the 
animal  model used. 18F-HOQ may be useful in monitoring the 
progression of Aβ plaque deposition in suitable AD animal models by 
PET imaging and in assessing efficacy of therapeutic agents aimed at 
reduction of amyloid plaque burden. 18F labeled quinoline derivatives 
present interesting alternatives to derivatives of amyloid binding dyes 

Figure 8: Dynamic PET images (1min/image, 5min-10min) post injection of 18F-HOQ show the differences between brain uptakes of 12 months old control mouse 
(1st row: 6 images), 6 months old AD mouse (2nd row: 6 images) and 12 months old AD mouse (3rd row: 6 images). The view is coronal section at the level of the 
hippocampus as indicated in the brain atlas labeled image. Differences in brain uptake could be observed in AD mice as early as 6 months. Lower image represents 
mouse brain atlas. (CX: Cortex; HC: Hippocampus; CB: Cerebellum).
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such as Congo red and thioflavin in imaging Alzheimer’s plaques and 
warrant further investigation.
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