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Abstract

Multiple system atrophy (MSA) is a rare, largely sporadic, adult-onset 
neurodegenerative disorder of uncertain etiology, clinically manifesting with 
Parkinsonism, cerebellar impairment, autonomic dysfunction, and pyramidal 
signs. The pathological process affects striatonigral, olivopontocerebellar, 
and autonomic nervous systems. The major clinical variants correlate to 
the morphologic phenotypes of striatonigral degeneration (MSA-P) and 
olivopontocerebellar atrophy (MSA-C). Pathologically, MSA is characterized 
by glial cytoplasmic inclusions (GCIs) and neuronal inclusions (NIs) containing 
abnormal filamentous α-synuclein that involve many areas of the nervous 
system. Recent advances have increased our knowledge of the molecular 
pathogenesis of this devastating disease; updated consensus criteria and 
combined fluid and imaging biomarkers have increased the diagnostic 
accuracy and sensitivity versus other parkinsonian syndromes considerably. 
The pathology of this unique proteinopathy, in addition to ectopic deposition 
of misformed α-synuclein in glia and neurons, its cell-to-cell spreading in a 
prion-like matter, oxidative stress, proteasomal and mitochondrial dysfunction, 
dysregulation of myelin lipids, decreased expression of neurotropic factors, 
neuro inflammation, and energy failure, contributes to system-specific neuro 
degeneration. Despite several pharmacological approaches in MSA models, 
addressing these pathogenic mechanisms, no disease-modifying treatment for 
MSA is currently available.

Keywords: Multiple system atrophy; Diagnostic criteria; Pathogenesis; 
α-synuclein; Prion-like seeding; Glio-neuronal degeneration; Candidate 
biomarkers; New therapeutic approaches

Abbreviations
αSyn: α-Synuclein; CBD: Corticobasal Degeneration; FTLD: 
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Introduction
Multiple system atrophy (MSA) is a rare, largely spontaneous, 

rapidly progressing neurodegenerative disorder of uncertain 
etiology that is clinically characterized by a variable combination 
of Parkinsonism, cerebellar impairment, autonomic dysfunction 
and pyramidal tract signs. Its estimated main incidence is 0.6 to 
0.7 cases/ 100,000 populations; the estimated point prevalence is 
1.9 to 5 cases/ 100,000 increasing to 7.8/100,000 after age 40 years. 
The pathological process predominantly affects the striatonigral and 
olivopontocerebellar systems, which underlies the stratification of the 
heterogeneous disorder into a clinical phenotype with predominant 
Parkinsonism (MSA-P) and a cerebellar phenotype (MSA-C). In the 
Western hemisphere, MSA-P involves 70% of the patients, while in 
Asian populations MSA-C predominates in two-thirds of patients. 
MSA is a late-onset disorder (mean age at onset 56±9 years) with 
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poor functional prognosis and a median survival from onset of 
9.5 years [1,2]. Shorter symptom duration at baseline and absent 
L-dopa response predicted rapid UMSARS (unified MSA rating 
scale) progression [3]. MSA-P with slow progression and prolonged 
survival is an uncommon “benign” subgroup [4], while “minimal 
change” MSA is considered an aggressive variant [5].

Clinical Diagnosis
Recent consensus criteria differentiate possible, probable, and 

definite MSA, the latter confirmed by postmortem examination 
[6]. Red flag clinical categories had a specificity of 98.3% and a 
sensitivity of 84.2% [7]. Due to overlapping clinical presentations, 
it can be difficult to distinguish MSA from Parkinson disease (PD) 
in early disease, and from other atypical parkinsonian disorders, eg., 
progressive supranuclear palsy (PSP) and corticobasal degeneration 
(CBD) [8]. Prevalence of REM sleep behavior disorder in MSA is up 
to 88% [9].

No reliable fluid biomarkers are currently available to guide 
the clinical diagnosis and prognosis, although many studies suggest 
that combining CSF biomarkers, e.g. DJ-1, phospho-tau, light chain 
neurofilament protein (NFL), and Aβ-42 may be more successful 
in the differential diagnosis between MSA and other parkinsonian 
disorders [10]. Hypo intensity of the dorsolateral put amen in T2-
weighted MRI due to iron deposition differentiates MSA-P from PD 
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with high sensitivity [11-13]. There is recent evidence that functional 
MRI activation is abnormal in the basal ganglia, cerebellum, and 
cerebrum in MSA-P, and that another key distinguishing feature 
between MSA-P and PD is the extensive and widespread volume loss 
throughout the brain in MSA-P [14]. Recently described, rare cases 
of atypical MSA with clinical features consistent with frontotemporal 
lobe dementia (FTLD), have been suggested to represent a novel 
subtype of FTLD associated with αSyn [15].

Neuropathology
Together with PD and Lewy body dementia (LBD), MSA belongs 

to a group of neurodegenerative disorders - the α-synucleinopathies - 
which are characterized by the abnormal accumulation of α-synuclein 
(αSyn). The histological core features are glial cytoplasmic inclusions 
(GCIs, Papp-Lantos bodies) in oligodendroglia, the demonstration 
of which is required for the diagnosis of definite MSA [16]. αSyn, 
together with other proteins, is the main constituent of GCIs that 
also involves neurons as neuronal inclusions (NIs) [17] and other 
cells in wide areas of the nervous system, causing neuronal loss 
and demyelination [18]. Based on semi quantitative assessment 
of neuronal loss, gliosis and GCIs in brain regions, grading of 
striatonigral and olivopontocerebellar lesions into four degrees of 
severity [19] was confirmed by postmortem MRI [20], while others 
showed an overlap between striatonigral and Olivopontocerebellar 
atrophy (OPCA) system degeneration [21]. Recent stereological 
studies have demonstrated significant neuronal loss in substantial 
nigra, striatum and globus pallidus in MSA [22], and a widespread 
involvement of the neocortex, in particular the frontal cortex of 
MSA patients with impaired executive function [23]. Voxel-based 
morphometry (VBM) demonstrated significant gray matter atrophy 
in the MSA-P group in bilateral basal ganglia, cerebellum, frontal and 
temporal cortices, which were significantly correlated with cognitive 
dysfunction in MSA [24].

The lesions are not limited to the striatonigal and 
olivopontocerebellar systems but also involve many other parts of the 
central, peripheral and autosomal nervous system, underpinning the 
multisystem character of MSA [18,25]. Recent studies of skin biopsies 
revealed phospho-αSyn in Schwann cells [26] and in unmyelinated 
somatosensory dermal nerve fibers, whereas deposits in autonomic 
fibers are mainly found in PD [27].

Concomintant pathologies in MSA include Lewy bodies, the 
hallmark of PD and DLB, in 11 to 25.7%, frequently associated 
with cognitive impairment [17,18], rare co-occurrence of MSA and 
PSP and other tauopathies, while Alzheimer-related and TDP-43 
pathologies occur infrequently in MSA [18,28].

Etiopathogenesis
The causes of MSA are unknown. No environmental factors have 

been recognized. MSA is generally considered a sporadic disease, 
but there are familial cases, and in some pedigrees, it has been 
transmitted in an autosomal dominant form or recessive inheritance 
pattern. Mutations of Coenzyme Q10 (COQ2), SNCA, encoding 
αSyn, glucocerebrosidase gene (GBA) variants and other genetic loci 
have been investigated, but their association is under discussion [29-
35]. A G51D SNCA mutation was reported in a British family with 
autosomal dominant Parkinsonism and neuropathological findings 

comparable with both PD and MSA [36], while MSA is not a C9orf72-
related disease [37].

Although the mechanisms of αSyn triggered neurodegeneration 
and the pathogenesis of MSA are not fully understood, evidence from 
animal models and postmortem studies suggested that it is a primary 
oligodendrogliopathy [38]. The origin of αSyn-positive GCIs found 
in oligodendrocytes in MSA is enigmatic since earlier studies did 
not find expression of the protein in MSA oligodendroglia, which 
recently has been challenged [39]. Oligomeric αSyn and small fibrils 
are probably the most toxic forms initiating the aggregation process 
and subsequent cell death [40,41], and impairs maturation of primary 
oligodendrocyte progenitor cells [42,43]. Recent studies showed that 
αSyn can be transferred to grafted oligodendroglial cells from host 
rat brain neurons over expressing αSyn, supporting its neuron-to-
oligodendrocyte transfer [44], and suggest that – similar to preclinical 
models of PD – it is seeded through the brain in a “prion-like” manner 
in MSA [45,46].

The earliest stages of MSA pathogenesis is currently unknown but 
is likely to involve a relocation of p25α (TPPP), an oligodendroglia-
specific phosphoprotein, an important stabilizer of microtubules and 
myelin integrity [47], from the myelin sheaths into the oligodendroglial 
soma preceding the αSyn aggregation. Co expression of αSyn and p25α 
increases the expression of IκBα early and is dependent on aggregation 
and phosphorylation of αSyn. There is increased expression of IκBα 
and NF-κB in some oligodendrocytes containing GCIs, suggesting 
that both proteins are activate early in the course of MSA and their 
balance contributes to cellular demise [48]. These changes are followed 
by oligodendrocyte swelling and abnormal uptake or over expression 
of αSyn, which undergoes formation into insoluble oligomeres, 
followed by formation of GCIs [49]. Association with a significant 
decrease of p25α in oligodendroglia containing αSyn positive GCIs, 
implies that mitochondrial dysfunction can lead to secondary p25α 
relocation [50]. The ubiquitin-proteasomal pathway (UPS) and the 
autophagy-lysosomal pathway are tightly balanced and inhibition 
of the deubiquitinating enzyme carboxyl-terminal hydrolase L1 
(UCH-L1) in oligodendrocytes results in microtubule stabilization 
and prevents αSyn aggregate formation by activating the autosomal 
pathway, thus playing a role in oligodendroglial degeneration [51].

Dysregulation of the specialized lipid metabolism involved in 
myelin synthesis is associated with these changes [52,53]. The decrease 
in lipid levels was concomitant with increased αSyn expression, 
indicating that levels and not distribution of myelin lipid are altered 
in MSA, triggering myelin instability [54]. The formation of GCIs 
interferes with oligodendroglial and neuronal trophic support 
leading to functional disorder and eventually death of these cells, and 
initiates neuroinflammation by activation of quiescent microglia [18]. 
Released misfolded αSyn into the extracellular space may be taken 
up by neighboring neurons to form neuronal cytoplasmic inclusions 
(NCIs); it is suggested to spread in a “prion-like” through functionally 
connected neuronal networks [55], resulting in a system-like pattern 
of neurodegeneration that is typical of MSA. Recent postmortem 
studies expanded the spectrum of neuronal pathology in MSA, 
describing increased frequencies of neuronal inclusions, both NIs 
and Lewy bodies across a wide spectrum of brain regions, not only in 
canonical disease-associated regions (striatum, substantia nigra), but 
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also in many other region, suggesting a hierarchy of region-specific 
susceptibility [17]. Disease duration is significantly correlated with 
the severity of neurodegeneration, suggesting that the progression 
of αSyn pathology is time-dependent [18]; NIs appears earlier than 
previously thought. A correlation between neuronal pathology 
and both GCIs and NIs in the most severely affected brain regions, 
suggesting a linked between these phenomena has been reported [56], 
although the mechanisms underlying this remain to be elucidated.

In conclusion, the pathogenesis of MSA currently remains 
unknown. The disease has been viewed as a primary gliopathy-
synucleinopathy with neuronal pathology developing secondarily 
through mechanisms via the oligo-myelin-axon-neuron complex 
[38] Other authors have proposed that neuronal and glial inclusions 
may interact synergistically through unidentified mechanisms [57], 
disease progression resulting from the simultaneous degeneration 
of glia and myelin, due to GCIs, and aggregation of αSyn within 
neurons. On the other hand, MSA may be a primary neuronal disease 
and that the formation of GCIs results from secondary accumulation 
of pathologic αSyn that is neuronal in origin [58]. The influence of 
GCIs on the formation of NIs is unclear, but the burden of neuronal 
pathology appears to increase multifocally as an effect of disease 
duration associated with increasing overall αSyn load. Recent 
findings support the concept that neuronal pathology is an important 
if not primary component of MSA pathogenesis [17], which does 
not exclude the possibility of acceleration of neuronal pathology by 
accumulation of αSyn in glia as GCIs [38, 57]. Further research on the 
basic pathogenic mechanisms, the interplay of the disease process with 
various pathobiological changes, and the nature of possible genetic 
and environmental triggers that unmask its pathogenesis are needed 
to develop optimal animal models, and to clarify the relations between 
the development of pathomorphology and clinical manifestations as 
a basis for early diagnosis and a successful treatment of this hitherto 
incurable devastating disorder [59]. The advantages and limitations 
of MSA models and their application in preclinical target validation 
have been summarized critically [60].

Therapeutic Approaches in MSA
Currently, there is neither an effective neuroprotective nor a 

disease-modifying therapy in MSA although several pharmacological 
approaches have been tried in transgenic mouse or cellular models 
of MSA, including riluzole, rasagilin, minocycline, stem cells, 
etc., treatments that can halt or reverse the disease progression 
in humans have not yet been identified [61,62]. Symptomatic 
approaches include dopaminergic and anticholinergic agents, non-
pharmacological treatment; options to treat orthostatic hypotension, 
urinary and erectile dysfunction as well as palliative care [63]. Active 
immunization against αSyn has been shown to ameliorate the 
degenerative pathology and to prevent demyelination in a mouse 
model of MSA [64]. Understanding the pathogenesis of MSA and the 
factors leading to αSyn accumulation is essential for the development 
of successful therapeutic options. Effective treatment may result from 
a multi-targeted approach addressing several pathophysiological 
mechanisms together and from multidisciplinary collaborative efforts 
to test promising new therapies in properly designed clinical trials.
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