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Abstract

Tau and amyloid imaging with positron emission tomography (PET) will 
play an increasingly important role in the design of Alzheimer’s disease trials, 
both for the subject stratification and to evaluate the biological effects of drugs. 
Clinical PET acquisition protocols utilize short static scans with no arterial 
blood sampling. These images are normalized by a reference region’s activity 
before semi-quantitative regional or voxel-based analyses. The selection of an 
appropriate reference region for PET normalization is a critical factor for data 
interpretation. This study provides an overview on some of the challenges 
associated with PET normalization process in Alzheimer’s disease.

Short Communication
Pathological biomarkers of Alzheimer’s disease (AD), such as 

amyloid beta plaques (Aβ) and neurofibrillary tau tangles, will play 
an increasingly important role in the design of AD trials to identify 
appropriate subjects and to track the effects of drugs. For instance, Aβ 
biomarkers have helped to identify Aβ+ individuals, thus presumably 
on the AD trajectory, and improved the ability of more recent trials 
to detect anti-Aβ treatment effects [1]. Abnormal levels of Aβ and tau 
can be detected with the analysis of the uptake of layer-specific PET 
tracers, such as [18F] Florbetapir [2], [11C]PIB [3], [18F] Flutemetamol 
[4], [18F] Florbetaben [5] for Aβ and [18F] T807 (AV-1451) [6], 
[11C] PBB3 [7], [18F] THK5317 [8] for tau. Aβ/tau-PET images 
are normalized by a reference region’s activity. The PET intensity 
normalization process is a simple way of determining activity in PET 
images and allows semi-quantitative comparisons between different 
scans and subjects. These normalized images serve as starting points 
for subsequent analyses. PET data analysis techniques can be as 
simple as the regional/global mean of standardized uptake value 
ratio (SUVR) [9] or sophisticated data-driven, voxel-based analyses 
[10-12] or machine learning diagnostic techniques [13], which have 
found wider applications in research settings than in routine clinical 
diagnosis. Most clinical Aβ-PET images are visually assessed by 
trained experts [14]. However, quantitative methods will continue to 
play an increasingly important role in AD trials.

In the past, Aβ-PET studies in AD used cerebellum as the 
reference region. Price and colleagues [15] showed that in amyloid-
negative subjects, the pharmacokinetics of [11C] PIB in the cerebellar 
gray matter are similar to the cerebral gray matter target regions. 
This pharmacokinetic similarity was one of the main factors for the 
selection of cerebellum as the reference region in previous Aβ-PET 
studies. However, recent research with Florbetapir [16-19] has found 
variabilities associated with the cerebellar normalization of PET 
images, presumably due to the location of the cerebellum, which falls 
on the edge of the scanner’s axial field of view (FOV). Pathological 
effects could also contribute to the cerebellar amyloid uptake. Based 
on the Braak staging [20], the cerebellar amyloid deposit is present in 
stage three. Knight and colleagues [21] reported increased cerebellar 
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retention of [11C] PIB in presenilin-1 (PS1) mutation carriers. Catafau 
and colleagues [22] used post-mortem immunohistochemistry on 
64 AD subjects and nine non-demented volunteers to demonstrate 
parenchymal and vascular Aβ deposits in cerebellum and determine 
their impact on [18F] Florbetaben SUVR values. While they found 
diffuse plaques in 6% and vascular Aβ in 25.3% of their samples, 
the effect of cerebellar plaques on cortical SUVRs appeared to be 
negligible in this study. In comparison to cerebellar gray matter, the 
clearance of [11C] PIB in the pons and subcortical white matter (WM) 
is different than in cerebral gray matter target regions. Nevertheless, 
The utilization of white matter (and pons) as an alternative reference 
region has reduced variabilities in the longitudinal progression of 
Aβ-PET retention [16-19], improved discrimination power between 
subject groups [16] as well as increased the association between Aβ-
PET and clinical decline [17] and cerebrospinal Aβ1-42 [19]. 

Several cross-sectional tau-PET studies [6] have used cerebellar 
gray matter as the reference region. Given that longitudinal studies 
are of particular interest in tau imaging, the selection of cerebellum 
as the reference region for tau can obscure the subtle longitudinal 
changes in tracer uptake due to the additional noise created by its 
axial position in the scanner. While WM can be used as an alternative 
reference region in tau-PET to reduce the scan-to-scan variability, 
there are potentially other problems related to WM normalization. 
These include the presence of physiological and structural damages 
that can influence the non-specific uptake of amyloid [23,24] and 
possibly also tau radiotracers. For instance, Veronese and colleagues 
[24] showed that [11C] PIB uptake is sensitive to myelin changes in 
both preclinical models and humans. WM damages are prevalent in 
the aging population and are related to vascular risk factors, cognitive 
impairment and dementia [25]. Therefore, the utility of WM as a PET 
reference region may depend on its structural and functional integrity, 
which can vary among individual subjects. WM damages appear as 
hyperintensities on T2-weighted, proton density and fluid-attenuated 
inversion recovery sequences (FLAIR) of magnetic resonance imaging 
(MRI). Other advanced MRI imaging techniques, such as Diffusion 
Tensor Imaging (DTI) [26,27] can provide additional information 
on the micro structural integrity of the white matter by measuring 
fractional anisotropy (FA), which reflects the diffusion directionality 
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and mean diffusivity (MD), which shows the magnitude of water 
diffusion. DTI-MRI techniques can detect decreased structural 
integrity in normal-appearing white matter (NAWM) surrounding 
white matter hyperintensities [28]. Partial volume effects pose 
additional challenges to WM normalization, particularly in tau-PET 
imaging. Unlike amyloid tracers, tau retention in gray matter spreads 
into the nearby white matter, and the PET spatial resolution is too 
poor to separate the gray matter contribution from the white matter 
signal [29]. The presence of other pathophysiological conditions 
could also impact the non-specific radiotracer uptake in both 
cerebellum and WM. For instance, a history of traumatic brain injury 
(TBI) may pose an additional challenge to cerebellar normalization 
due to the increased likelihood of Aβ accumulation in the cerebellum 
of TBI subjects [30]. After age, family history, and APOE-ε4, TBI is 
the strongest risk factor for AD [31,32]. TBI affected subjects, such 
as Veterans and retired athletes will be increasingly recruited into 
AD drug trials. Therefore, cerebellum may not be a suitable reference 
region for this population. The binding characteristics of amyloid/tau 
radiotracers in the study of WM diseases are not entirely understood. 
There is a need for further studies related to this topic. Additional 
MRI scans to evaluate WM damages in individual subjects would be 
a good idea in clinical trials. Recent work by Fleischer and colleagues 
[33]. Found that the longitudinal percent change between placebo 
and solanezumab groups was not significant when cerebellum was 
used as reference region but became significant when the subcortical 
white matter was used as the reference region. This study is a good 
example of where the detection of damaged white matter regions (e.g. 
due to ARIA-E [34]) and their exclusion from the reference region 
ROI could further increase the effect size between treatment and 
placebo groups.

In summary, we have identified that the PET normalization 
process is a critical challenge for Aβ/tau-PET imaging in the aging 
population and Alzheimer’s disease. One alternative solution 
would be to eliminate the reference region normalization from 
semi-quantitative PET studies. For amyloid imaging, this can be 
done by using topographic techniques, such as weighted two-point 
correlation functions [19], Haralick features [35], and peak cortical 
laminar deposition [36] that can be performed on non-normalized 
PET images. The idea behind these techniques is based on previous 
pathological observations on the spatiotemporal progression of 
amyloid in AD. For instance, from studies by Bruce and colleagues 
[37], we know that over the time the progressive amyloid deposition 
encompasses a greater extent of cerebral cortical laminae. The same 
pattern of progression is observed in PET radiotracer uptake, which 
starts from the interface between gray matter and white matter and 
gradually expands toward the brain surface.
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