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Diabetic Retinopathy (DR) is one of the most common 
microvascular complications of Diabetes Mellitus (DM) and is the 
most common cause of preventable legal blindness in persons aged 
25-74 years [1]. Despite the advances in the field of metabolic control 
of diabetic patients, the prevalence of DR remains high. Nearly all 
patients with type 1 diabetes and >60% of patients with type 2 
diabetes have retinopathy during the first two decades of disease 
[2]. Hyperglycemia triggers retinal endothelial cell activation and 
increases leukocyte/endothelial interaction leading to breakdown of 
the Blood Retinal Barrier (BRB) and vascular hyper permeability. 
This leakage results in diabetic macular edema, the most common 
cause of decreased visual acuity in diabetic patients. Later, capillary 
degeneration and ischemia develop which lead to uncontrolled 
neovascularization in an attempt to compensate for the lack of blood 
flow [3,4]. The current therapeutic intervention including timely laser 
photocoagulation, vitrectomy and repeated intravitreal injections of 
anti-VEGF or steroids, are invasive and limited by significant side 
effects. Furthermore, they may be effective for preservation of sight 
in proliferative diabetic retinopathy and macular edema but their 
ability to reverse visual loss is poor.  Many patients have evidence of 
retinal subclinical inflammation at the time they are diagnosed with 
diabetes [5]. This means that pro-DR mechanisms arise early during 
the course of diabetes, although the nature of these mechanisms is 
not clearly evident. Hence, shifting investigative efforts to elucidate 
the mechanisms initiating and promoting the early changes in retinal 
function is important to develop effective therapeutic approaches 
with the goal of preventing (or at least minimizing) the development/
progression of DR. 

The early inflammatory response in retina has been proposed to 
be the result of persistent hyperglycemia as well as of dyslipidemia 
[6-8]. The role of dyslipidemia in the development of DR has not yet 
been studied in details despite the clinical evidences that dyslipidemia 
may contribute to the pathogenesis of DR [9,10]. Dysregulation of 
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lipid signaling has been reported in a variety of retinal diseases 
including DR, retinopathy of prematurity, and age-related macular 
degeneration[11]. This dysregulation is characterized by an increase 
in n6 Polyunsaturated Fatty Acids (PUFA), such as AA, while the n3 
PUFA, such as Docosahexaenoic Acid (DHA) [9,12-14]significantly 
decreased. DHA is known to elicit beneficial effect against 
microvascular complications of diabetes [15,16]via its lipid products 
such as neuroprotectin D1, resolvins and lipoxins. Interestingly, 
activation of cPLA2 was reported in experimental models of ischemic 
retinopathy [17,18]. Activation of cytosolic phospholipase A2 
(cPLA2) generates freeAA which in turn via different enzymatic 
pathways including cycloxygenase (COX2), lipoxygenase (LOX), and 
cytochrome P450 (CYP) is converted to pro-inflammatory mediators 
such as hydroxyeciosatetreanoic acids (HETEs), leukotrienes and 
prostaglandins. 

Our previous studies demonstrated for the first time that 
12/15-lipoxygenase-derived lipid metabolites 12- and 15-HETEs are 
implicated in the pathogenesis of microvascular dysfunction during 
DR [19,20]. This includes pathological retinal neovascularization 
via disrupting the delicate balance in the levels of Vascular 
Endothelial Growth Factor (VEGF) and the Pigment Epithelium 
Derived Factor (PEDF). Furthermore, these lipid metabolites via 
activation of NADPH oxidase, a known source of reactive oxygen 
species during DR modulate endothelial cell barrier function and 
induce hyperpermeability. Effect of 12/15-LOX-derived HETES 
on retinal endothelial cell barrier was associated with activation of 
VEGF receptor2 (KDR) through oxidation of the Protein Tyrosine 
Phosphatase (PTP). Our findings suggest that these lipid metabolites 
derived from endothelial 12/15LOX are implicated in DR via both 
paracrine and autocrine loop. The paracrine loop involves activation 
of retinal Muller cells to produce VEGF and down regulate PEDF. 
On the other hand the autocrine loop involves activation of 
VEGFR2 (KDR) signaling pathway in REC via oxidation of the PTP. 
Interestingly, enriching the retina with n3 PUFA such as DHA diverts 
the activity of 12/15-LOX from generating the pro-inflammatory 
and pro-angiogenic lipid metabolites (HETEs) to generate anti-
inflammatory and angiostatic metabolites such as neuroprotectin 
D1, lipoxins and resolvins. Therefore, we suggest 12/15-LOX as an 
endogenous double-edged sword depending on the type of substrate 
available for its activity.This means that inhibition of 12/15-LOX or 
dietary supplement with ω-3 Polyunsaturated Fatty Acids (PUFAs) 
may be used either as an alternative or supplement to the current 
therapeutic strategies for the DR. 

In addition to dyslipidemia, oxidative stress is a key factor in 
mediating both hyperglycemia and dyslipidemia-induced retinal 
vascular injury. Our previous studies highlighted the NADPH oxidase 
as a major source of ROS generation in rodent retina of experimental 
diabetes and oxygen-induced retinopathy model as well as in retinal 
endothelial cells treated with high glucose or hypoxia [21-24]. We 
also found that effects of HETEs on retinal endothelial cells are 
linked to NADPH oxidase activity suggesting that dysregulation of 
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lipid metabolism in diabetic retina contributes to the change in redox 
status of retina during DR. Despite the experimental evidence which 
suggest oxidative stress as a mediator of the neurovascular damage 
during DR, the efficacy of antioxidant in treatment of DR is still 
questionable.  A 5 year follow-up of antioxidant supplementation in 
type 2 diabetes showed no change in the best-corrected visual acuity 
during the follow-up. However, there was remarkable retardation 
in the progression of retinopathy to advanced stage in the patients 
received antioxidant supplementation in comparison to patients 
without supplementation [25]. This suggests that oral antioxidant 
supplementation might be useful in prevention of progression of DR 
and in turn saving sight in diabetic patients.

In summary optimum control of blood glucose and possibly lipid 
and oxidative stress signaling are the foundation to reduce the risk 
of retinopathy development and progression by reducing the early 
inflammatory response in retina of diabetic patients.
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