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Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness 

among people over the age of 50 worldwide. However, its exact causes and the 
underlying mechanisms remain largely unknown. The P2X7 receptor (P2X7R) 
is an ATP-gated cationic channel expressed in retina. Recent advances 
have highlighted the P2X7R-mediated pathophysiological processes in the 
development of AMD. This review will discuss the current literature regarding 
P2X7R in the RPE physiological and pathophysiological processes, and assess 
its potential impact with respect to AMD.
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Abbreviations
AMD: Age-related Macular Degeneration; ASC: Apoptosis-

associated Speck-like protein containing a Caspase recruitment 
domain; ATP: Adenosine Triphosphate; BBG: Brilliant Blue 
G; BzATP: 2′3′-O-(4-benzoylbenzoyl)-ATP; CNV: Choroidal 
Neovascularization; IL-8: Interleukin 8; KN-62: 4- [(2S)-2- 
[(5-isoquinolinylsulfonyl) methylamino] -3 - oxo - 3 - ( 4 - phenyl - 1 
-piperazinyl) propyl] phenyl isoquinolinesulfonic acid ester; MCP-
1: Monocyte Chemoattractant Protein-1; NF-κB: Nuclear Factor 
κB; NLRP3: Nucleotide-binding domain and Leucine-Rich repeat 
containing family, Pyrin domain containing 3; oATP: Oxidized ATP; 
POSs:  Photoreceptor Outer Segments; PPADS: Pyridoxal-Phosphate-
6-Azophenyl-,2’,4’-Disulphonic Acid; P2X7R: P2X7 Receptor; ROS: 
Reactive Oxygen Species; RPE: Retinal Pigmented Epithelium; SNPs: 
Single Nucleotide Polymorphisms; VEGF: Vascular Endothelial 
Growth Factor 

Introduction
Age-related Macular Degeneration (AMD) is the leading cause 

of blindness among people over the age of 50. It is a worldwide 
epidemic. In a cross-sectional study with 4 racial/ethnic groups aged 
45-84 years, early AMD and late AMD were present in 4.0% and 0.5% 
of the cohort, respectively, varying from 2.4% and 0.2% in blacks, 
3.8% and 0% in Hispanics, and 3.8% and 1.1% in Chinese to 6.0% and 
0.5% in whites, respectively [1]. In a large retrospective longitudinal 
cohort study, among 2 259 061 individuals (whites, blacks, Latinos, 
and Asians) aged ≥40 years, 113 234 (5.0%) were diagnosed with 
non exudative and 17 181 (0.76%) with exudative AMD [2]. In 
a Chinese population aged ≥40 years, the prevalence of early, late, 
and neovascular AMD was 5.2%, 0.2% and 0.1%, respectively, and 
the incidence of per subject was 4.2%, 0.1%, and 0.1%, respectively 
[3]. The prevalence of AMD rises steeply with age. In a study with 
three racially similar populations of 14 752 individuals from North 
America, Europe, and Australia, AMD affects nearly 0.2% of the 
population aged 55 to 64 years, and 13% of the population older than 
85 years [4]. The estimated prevalence of late AMD was 0.08% at age 
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50, 0.33% at age 60, 1.38% at age 70, 5.60% at age 80, and 20.10% 
at age 90, respectively [5]. As global population ages, the burden on 
healthcare systems worldwide related to treating this chronic disease 
will be overwhelming.

AMD is a progressive degeneration of the macula, the portion of 
the retina used for central vision. Retina consists of the inner neural 
retina, and the outer Retinal Pigment Epithelial (RPE) layer. The RPE 
layer sits on Bruch’s membrane, forms the outer blood-retina barrier, 
separates the neural retina from its choroidal blood supply, and 
maintains a physiological environment for photoreceptor function. 
This RPE monolayer is a main target in the development of AMD. 
The earliest stage of AMD is characterized by an accumulation of 
extracellular lipid- and protein-containing deposits, termed drusen, 
between the RPE and Bruch’s membrane. As AMD progresses, it 
can develop into two distinct forms of late or advanced AMD: “dry” 
AMD (geographic atrophy) and “wet” AMD (neovascular AMD). The 
“dry” AMD is the most common form (90%), characterized by the 
slow loss or blurring of central vision in spots due to significant RPE/
neuro retinal atrophy. The “wet” AMD is less common (10%), more 
severe, and may progress rapidly and cause the most severe vision 
loss because of proliferation and invasion of abnormal choroidal (or 
occasionally retinal) blood vessels and fluid leakage into the retina 
[6-9].

The exact causes and the underlying pathogenic mechanisms for 
AMD remain largely unknown, but numerous studies have established 
advanced age, smoking, and genetic predisposition as key risk factors. 
Other risk factors include low dietary intake of antioxidants, dietary 
fat intake, gender, race, ethnicity, cardiovascular disease, high blood 
pressure, cholesterol levels, estrogen levels, and light exposure [9,10]. 
The possible mechanisms for AMD include genetic, epigenetic and 
environmental factors related to RPE senescence, alterations in the 
complement pathway, increased inflammation, changes in the balance 
of growth factors, excessive lipofuscin accumulation, mitochondrial 
defects, and oxidative stress [6,8]. Currently, there is neither a cure 
nor means of prevention for AMD [8,9]. Many completed and 
ongoing immune-based clinical trials for AMD have been ineffective 
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[7]. There is, therefore, a critical need to identify new mechanisms 
for AMD, in order to develop unique preventive and therapeutic 
strategies for this age-related blinding disease.

The purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7R; 
also known as P2RX7, P2X7 receptor, P2X7, P2X7 or P2Z) is an ATP-
gated cationic channel expressed by a variety of cell types including 
hematopoietic, epithelial, and neuronal cells [11-19]. The P2X7R is 
involved in oxidative stress, cell death and inflammatory processes, 
all of which have been linked to AMD.

This review will discuss the most recent advances in the P2X7R, 
focusing on the P2X7R in the RPE and its implications in AMD 
pathogenesis. 

The P2X7 Receptor
Virtually all types of cells express plasma membrane receptors 

for extracellular nucleotides termed P2 receptors that are further 
categorized into P2X receptors and P2Y receptors [20]. So far, fifteen P2 
receptors have been identified, including seven P2X receptor subunits 
(P2X1-7), and eight P2Y receptor subtypes (P2Y1,2,4,6,11,12,13,14).  
P2X receptors are ligand-gated, nonselective cation channels, 
ranging from 379 to 595 amino acids in length. Each subunit of 
P2X receptors is composed of two transmembrane domains (TM1 
and TM2), a large extracellular loop, and intracellular N- and 
C-termini. P2X receptor subunits co-assemble to form functional 
homotrimeric or heterotrimic forms depending on tissue-specific 
expression and receptor subunits. P2X receptors are activated by 
extracellular ATP. Activation of P2X receptors causes influx of Ca2+ 
and Na2+ and efflux of K+. P2Y receptors are classical heterotrimeric 
G protein-coupled receptors featuring an extracellular N-terminus, 
seven transmembrane domains, and an intracellular C-terminus. P2Y 
receptors are activated by ATP, ADP, UTP and UDP.

Among seven P2X receptors, the P2X7R is unique in terms of 
both its structure and function. The human P2X7R gene is localized 
within a 55-kb region of chromosome 12q24, is highly polymorphic 
and has 13 exons that encode a 595 amino acid polypeptide [21].  
The C-terminus (244 aa) of P2X7R is 120-200 amino acids longer 
than that of the other P2X receptors, and harbors multiple potential 
protein and lipid interaction motifs, which was thought to be pivotal 
in regulating its function [22]. Increasing evidence suggests that the 
C-terminusis critical for post-translational modification, cellular 
localization, oligomerization, protein-protein interactions and 
signaling pathway activation [23,24]. A schematic structure of the 
P2X7R is shown in (Figure 1).

The position of a single amino acid substitution from glycine 
to arginine at residue 150 (Gly150Arg) as a result of P2X7 receptor 
474G>A (rs28360447) gene polymorphism is shown on the diagram. 

Stimulation of P2X7R with low ATP doses, reversibly opens a 
membrane channel permeable to small cations (Na+, Ca2+, K+), while 
prolonged exposure with higher ATP doses or repeated stimulation 
with sequential ATP leads to the formation of a nonselective pore 
permeable to molecular mass up to 900 Da, which can result in 
cell death by either apoptosis or necrosis [11,12,25]. Aging has 
been associated with increased expression of the pro-inflammatory 
cytokines and chemokines [26-31]. Inflammation and oxidative stress 
are hallmarks of aging, and have been linked to a wide spectrum of 

age-related disorders, including Alzheimer’s disease and AMD. 
Evidence indicates that the P2X7R is involved in aging, oxidative 
stress, inflammation, as well as age-related disorders, such as such as 
Alzheimer’s disease [32-34], and AMD [17,35-37].

P2X7R Polymorphisms
The human P2X7R gene contains more than 260 Single Nucleotide 

Polymorphisms (SNPs).  Among them, functional polymorphisms 
that increase (gain-of-function) or decrease (loss-of-function) 
function of the P2X7R are characterized, and a few polymorphisms 
have been associated with diseases. Non-synonymous SNPs and the 
corresponding literature are listed in Table 1.

By comparing amino acid sequences, it was found that P2X7R 
is more homologous to P2X4R (~40%) than are the other P2X 
receptor subunits. Given their location adjacent to each other on 
human chromosome 12, and their overlap in tissue distribution 
[38,39], efforts have been made to identify if there is a physical and 
functional interaction between the two receptors. Several studies have 
found that P2X4R and P2X7R are co-expressed in immune cells and 
epithelial cells, and heteromerization can change both the functional 
and pharmacological properties of P2X receptors [40-43].

A loss-of-function polymorphism has been identified in human 
P2X4R Tyr315Cys (rs28360472) which is associated with increased 
susceptibility to AMD [35]. P2X7R 474G>A (Gly150Arg) (rs28360447) 
gene polymorphism leads to a single amino acid substitution from 
glycine to arginine at residue 150 (Figure 1), producing loss-of-

Figure 1: Diagrammatic representation showing the membrane topology of 
P2X7receptor subunit. First and second transmembrane domains are labeled 
TM1 and TM2. The position of a single amino acid substitution from glycine 
to arginine at residue 150 (Gly150Arg) as a result of P2X7 receptor 474G>A 
(rs28360447) gene polymorphism is shown on the diagram.
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dbSNP ID Base change Exon Amino acid 
change Function compared to WT  or Disease Association Reference

rs35933842 151+1g → t 1 Null allele  
associated with increased fracture risk and reduced BMD in women

[92]

[100]

rs1752809 253T → C 2 Val76 to Ala Partial inhibition [45]

rs28360447 474G → A 5 Gly150 to Arg

loss-of-function-disrupted protein folding, no pore formation

associated with increased susceptibility to AMD

associated with decreased hip BMD values

associated with decreased total hip BMD in women and men combined

[44,45]

[35]

[102]

[100]

rs208294 489C → T 5 His155 to Tyr gain-of-function [45,93,94]

rs7958311 835G → A 8  His270 to Arg gain-of-function [45]

rs7958316 853G → A 8 Arg276 to His loss-of-function [45]

rs28360457 946G → A 9 Arg307 to Gln
loss-of-function

associated with the rate of bone loss in post-menopausal women 

[95]

[101]

rs1718119 1068G → A 11 Ala348 to Thr

gain-of-function

enhanced interleukin-1β secretion

associated with a lower vertebral fracture incidence 10 years after 
menopause in post-menopausal women

associated with increased BMD values at the lumbar spine

associated with reduced fracture risk and increased BMD

[94,96]

[45]

[101]

[102]

[100]

rs2230911 1096C → G 11 Thr357 to Ser loss-of-function [97]

rs2230912 1405A → G 13 Gln460 to Arg

small reduction, no major effect or gain-of-function

a significantly decrease in risk of a lower BMD T-score value

associated with increased total hip BMD in women

[44,45,93,94]

[102]

[100]

rs3751143 1513A → C 13 Glu496 to Ala

loss-of-function; surface expression not affected

associated with protection against bone loss in post-menopausal women

associated with a decreased risk of IHD in smokers as well as decreased 
risk of IS

significantly associated with increased susceptibility to tuberculosis

associated with decreased hip BMD values

decreased lumbar spine BMD in women and decreased total hip BMD in 
men

[98]

[101]

[103]

[104]

[102]

[100]

rs1653624 1729T → A 13 Ile568 to Asn
loss-of-function

had increased bone loss

[98,99]

[101]

Table 1: Single Nucleotide Polymorphisms (SNPs) in P2X7 Receptor

Note: BMD, bone mineral density; IHD, ischemic heart disease; IS, ischemic stroke.
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function channel [44,45]. Haplotype analysis showed that the P2X4R 
315-Cys minor allele was co-inherited with P2X7R 150-Arg 4-fold 
more often in patients with AMD than in normal control subjects 
[35]. Among 17 patients with AMD inheriting the haplotype of 
P2X4R315-Cys plus P2X7R 150-Arg, 14 were female [35]. Infiltrating 
macrophages within the choroid and microglia within a monkey 
neural retina were found to co-express P2X4R and P2X7R [35]. 
In mouse bone marrow-derived dendritic cells, it was found that 
expression of P2X4R is required for P2X7R-dependent IL-1β and IL-
18 release [46]. Based on Ca2+ influx triggered by ATP and BzATP  
was insensitive to suramin, we suggested  that in addition to P2X7R,  
P2X4R could contribute to ATP- and BzATP-induced Ca2+ influx in 
the RPE [17]. Future studies are needed to test this hypothesis.

The P2X7R is a new scavenger receptor for bacteria and apoptotic 
cells in the absence of serum and extracellular ATP [47], suggesting the 
unstimulated P2X7R could have a beneficial role under physiological 
conditions.  Whether the P2X7R is a new scavenger receptor in the 
RPE needs to be investigated. This is important, because one of the 
RPE’s essential functions is phagocytosis, removing photoreceptor 
outer segments (POSs) to maintain neural retina health [48]. Both 
human and mouse RPE express the P2X7R [17-19,49].  Moreover, 
P2X7R protein is expressed on both apical and basolateral 
membranes of mouse RPE monolayer in situ [19]. Compared to 
human macrophages, ARPE-19 cells (a human RPE cell line) are more 
efficient in clearing anoikic and UV-induced apoptotic cells [50], 
suggesting the importance of the RPE in clearance of dying cells and 
extracellular debris. The P2X7R expressed on apical membrane could 
participate in phagocytosis of POSs, while the P2X7R expressed on 
basolateral membranes could be important for clearance of apoptotic 
cells and against invading bacteria.

The P2X7R in the RPE
The P2X7R is expressed in epithelial cells [13-19], and upregulated 

by lipopolysaccharide and pro-inflammatory cytokines [18,51,52]. 
In the RPE, the expression of the P2X7R is also up regulated by 
aging [18]. Under normal physiological conditions, P2X7R activity 
is kept at a low level by the concentration of extracellular divalent 
cations [53,54] as well as by low micromolar range of extracellular 
ATP. Extracellular divalent cations appear to alter the affinity of 
ATP binding in an allosteric manner [55]. Low micromolar range 
of extracellular ATP is not favored for P2X7R activation, as the 
P2X7R is the least sensitive member of the P2X receptor family to 
activation by ATP with EC50 value of 0.1 to 1 mM compared with 
P2X1-6 receptors whose EC50 value is 1 to 10 μM [17,56-58]. This 
could avoid unnecessary cell permeability and pore formation [59]. 
Under stress conditions, both RPE cells and neural retina are capable 
of releasing ATP that can act on P2X receptors in RPE cells and/
or photoreceptors in an autocrine or a paracrine manner [17,36].  
Among seven P2X receptors, P2X7R mRNA and protein have been 
identified in the RPE by three independent research groups [17-
19,49].  We detected not only P2X7R protein, but also P2X7R mRNA 
in human RPE cells [17]. Guha et al. also detected both P2X7R mRNA 
and protein in mouse RPE cells, with the P2X7R protein expressed on 
both apical and basolateral membranes of mouse RPE monolayer in 
situ [19]. Compared to wild-type mice, P2X7R mRNA in fresh RPE/
choroid tissue was increased in ABCA4−/− mice, a mouse model of 

Stargardt’s retinal degeneration [19]. We also found that aging and 
inflammation upregulated the expression of P2X7R mRNA and 
protein in the RPE [18]. However, Gu et al. [35], reported that P2X7R 
protein was not detected in retinal sections from an adult monkey 
(Macaca fascicularis) eye by using immunofluorescent labeling 
method [35]. P2X7R mRNA was not reported in their study. The 
discrepancies between the report by Gu et al. [35] and other three 
independent research groups [17,19,49] could be explained by species 
difference. In addition, different sources of commercially available 
antibodies [60,61] used could play a role. Therefore, caution should 
be taken when interpreting P2X7R protein expression data obtained 
by immunocytochemistry.

The P2X7R is functional in the RPE. ATP is an endogenous 
P2X7R agonist, while 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) 
is a synthetic, selective P2X7R agonist [62]. Both ATP and BzATP 
induce RPE apoptosis after 6 hr or 24 hr stimulation, and increase 
intracellular Ca2+ via extracellular Ca2+ influx rapidly in primary 
human RPE [17]. BzATP also raises intracellular Ca2+ in ARPE-19 
cells [19]. However, ARPE-19 cells exposed to BzATP (50 or 100 
μM) for 60 minutes did not release lactose dehydrogenase into the 
extracellular media [19], indicating that short exposure did not kill 
ARPE-19 cells. Both ATP and BzATP increased YO-PRO-1 (629 Da) 
dye uptake in a human RPE cell line, ARPE-19 cells [49].  BzATP also 
triggered a rapid and reversible elevation of Ca2+ in freshly isolated 
mouse RPE cells [19]. These data indicate that activation of P2X7R 
by ATP or BzATP not only opens a membrane channel permeable 
to Ca2+, but also leads to the formation of membrane pore permeable 
to YO-PRO-1, and cell death in RPE cells. Functional P2X7R in the 
RPE was further validated in the RPE by using P2X7R antagonists, 
oxidized ATP (oATP), brilliant blue G (BBG), and 1-[N,O-Bis(5-
isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-
62). Oxidized ATP significantly inhibited ATP- or BzATP-induced 
Ca2+ influx and apoptosis by the RPE. BzATP-induced RPE apoptosis 
was blocked or significantly inhibited by P2X7R antagonists BBG, 
KN-62, and oATP [17]. Reduction or removal of extracellular Ca2+ 
or the buffering of intracellular Ca2+ with BAPTA-AM significantly 
inhibited or blocked ATP-induced apoptosis [17]. These findings 
suggest that the P2X7R contributes to ATP- and BzATP-induced 
Ca2+ signaling and apoptosis in the RPE. Therefore, abnormal Ca2+ 
homeostasis and membrane pore formation through the activation 
of P2X7R could cause the dysfunction and apoptosis of RPE that 
underlie AMD. 

One of major functions of the RPE is to degrade phagocytosed 
POSs. Guha et al. [19] demonstrate that stimulation of P2X7R by 
100 μM BzATP Palkalinizes lysosomes in ARPE-19 cells.  Although 
P2X7R antagonist A438079 [63] had greater potency in blocking 
BzATP-induced intracellular Ca2+ increase in recombinant mouse, 
rat or human P2X7R-expressed human astrocytoma 1321N1 cells, 
compared with BBG [64], the potency of A438079 to inhibit BzATP-
induced increase in lysosomal pH in ARPE-19 cells seemed lower, 
compared with BBG. A438079 at 10 μM and BBG at 1 μM suppressed 
BzATP-induced increase in lysosomal pH to a similar extent [19]. 
This BzATP-induced lysosomal alkalinization was dependent on 
extracellular Ca2+, because BzATP was unable to increase lysosomal pH 
in the absence of extracellular Ca2+ [19], indicating P2X7R plays a role 
in lysosomal alkalinization.  Lysosomal enzymes function optimally 
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at low pH. Thus, lysosomal alkalinization could impair lysosomal 
function. Indeed, they found that blockage of the P2X7R by BBG was 
able to reduce lipid oxidation and lipofuscin-like autofluorescence 
induced by POSs plus lysosomotropic agent chloroquine [19]. 
Cathepsin D is a major proteolytic enzyme participating in the 
lysosomal digestion of phagocytosed POSs [65,66]. BODIPY FL-
pepstatin A selectively binds to cathepsin D at pH 4.5 [67]. Lysosomal 
alkalinization induced by BzATP reduced BODIPY FL-pepstatin A 
binding to cathepsin D [19], indicating the ability of cathepsin D to 
digest proteins is compromised. Furthermore, stimulation of ARPE-
19 cells with BzATP increased the ratio of LC3BII/LC3BI (autophagy 
markers), and decreased the level of p62 (autophagy adaptor protein), 
supporting impairment of autophagic flux [19]. Recently, Kim et 
al. discovered LC3-associated phagocytosis in which the interplay 
between phagocytosis and autophagy within the RPE is required 
for degradation of POSs and the maintenance of retinoid levels to 
support optimal vision [68]. Given that the P2X7R is involved in 
both autophagy [19,69] and phagocytosis [47], we anticipate that the 
P2X7R could play a role in this LC3-associated phagocytosis.

The P2X7R in AMD
Oxidative stress, inflammation, and cell death are implicated in 

AMD [8,70-73]. As activation of P2X7R induces Ca2+-dependent 
apoptosis and lysosomal alkalinization in the RPE [17,19], we propose 
that abnormal Ca2+ homeostasis, oxidative stress, inflammation, 
and cell death are important factors for the development of AMD 
(Figure 2). The RPE maintains a healthy environment for normal 

photoreceptor function. In dry or atrophic AMD, it appears that the 
RPE dies first, leading to dysfunction and death of photoreceptors and 
choriocapillaris; in neovascular or wet AMD, loss of choriocapillaris 
with an intact RPE monolayer in wet AMD has been observed, 
indicating that the loss of choroidal vasculature may be the initial 
insult to the RPE/Bruch’s membrane /choriocapillaris complex [74].

In neovascular AMD, severe photoreceptor loss develops with 
sub retinal hemorrhage due to growth and invasion of abnormal and 
invasion blood vessels. Recently, Notomi et al. [36] demonstrate that 
compared to control vitreous samples, ATP levels in the vitreous 
samples from AMD patients with subretinal hemorrhage were 
increased. In co-culture with primary mouse retinal cells, extra 
vascular blood induced a massive ATP release and photoreceptor 
cell apoptosis. Caspase-9 activation and apoptosis-inducing factor 
translocation from mitochondria to nuclei were also observed [36], 
indicating involvement of mitochondrial apoptotic pathways in 
ATP-induced photoreceptor cell apoptosis.  BBG, a selective P2X7R 
antagonist prevents photoreceptor cell apoptosis in a mouse model of 
subretinal hemorrhage. These data suggest that activation of P2X7R 
by extracellular ATP may accelerate photoreceptor cell apoptosis in 
AMD with subretinal hemorrhage. 

Pyridoxal - phosphate - 6 - azophenyl - 2’, 4’ - disulphonic acid 
(PPADS) is a non-selective P2 antagonist [75]. A laser induced 
choroidal neovascularization (CNV) mouse model is usually used as 
wet AMD model for testing the efficacy of drugs intended to attenuate 
CNV [76]. After daily topical application of 4.17 mM PPADS for 

Figure 2: Proposed model of the P2X7 receptor-mediated signaling that leads to age-related macular degeneration. Schematic diagram shows P2X7 receptor-
mediated signaling pathways that lead to RPE senescence, RPE apoptosis and AMD [17,19,36,37,90,91].
Abbreviations Used: AMD, age-related macular degeneration; ATP, adenosine triphosphate; IL-8,  interleukin 8; IL-18, interleukin-18; MCP-1, monocyte 
chemoattractant protein-1; NLRP3, nucleotide-binding domain and leucine-rich repeat containing family, pyrin domain containing 3; RPE, retinal pigmented 
epithelium; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor.
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three consecutive days, the area of neovascularization and membrane 
attack complex deposition were examined in the eye tissues one 
week later to evaluate for progression of eye tissue damage and 
blood vessel growth. Birke et al. [77] found that topical application 
of the PPADS attenuated both the area of CNV and membrane attack 
complex deposition in this mouse model of laser induced CNV. As 
PPADS inhibited BzATP-induced inward currents in HEK293 cells 
stably expressing the human recombinant P2X7R [75], we speculate 
that PPADS could protect retina against membrane attack complex 
deposition and CNV through inhibiting the activation P2X7R. 
Further experiments are needed to support this idea.

The P2X7R is also critical in the development of dry AMD. 
Using in vitro cultured human RPE model, we found that functional 
P2X7R is expressed in human RPE cells, and that activation of 
P2X7R induces human RPE apoptosis that is dependent on P2X7R-
mediated extracellular Ca2+ influx [17]. We proposed that abnormal 
Ca2+ homeostasis through the activation of P2X receptors, especially 
P2X7R could cause the dysfunction and apoptosis of RPE that 
underlie AMD [17]. Recently, Kerur et al. [37] demonstrated a critical 
role of Nuclear Factor κB (NF-κB) and P2X7R in mediating Alu RNA-
induced RPE degeneration. Alu RNA is a 300 nucleotide, noncoding 
transcript. It is metabolized by a microRNA processing enzyme 
DICER1 into harmless cleavage fragments. DICER1 deficiency results 
in accumulation of Alu RNAs. This accumulation induces cultured 
human RPE death and mouse RPE degeneration in vivo [78,79]. BAY 
11-7082 (NF-κB inhibitor), A-740003 (P2X7R antagonist [80]), and 
glyburide (an inhibitor of nucleotide-binding domain and leucine-
rich repeat containing family, pyrin domain containing 3 (NLRP3) 
inflammasome), all protected wild-type mice from Alu RNA-induced 
RPE degeneration [37]. Alu RNA-induced mouse RPE degeneration 
was also protected in mice lacking NF-κB gene or P2X7R gene, when 
compared to wild-type control [37].  

Activation of NLRP3 inflammasome in other systems requires at 
least two signals, a priming signal and an activating signal. A priming 
signal involves induction of NLRP3 inflammasome components 
(NLRP3, Apoptosis-Associated Speck-Like protein containing a 
caspase recruitment domain (ASC), and pro-caspase-1)and pro-
cytokines (pro-interleukin-1β and pro-interleukin-18).An activating 
signal promotes the assembly of NLRP3 inflammasome components, 
proteolytic activation of caspase-1, and processing of pro-cytokines 
into mature cytokines [32,81,82]. The NF-κB family of transcription 
factors regulates many cellular responses including inflammation 
and cell death. Both in vitro and in vivo experiments identified that 
the P2X7R is responsible for ATP-dependent IL-1β release [83-
87]. Disruption of the P2X7R gene abolishes chronic inflammatory 
[87]. In the RPE, NF-κB is a key transcription factor regulating Alu 
RNA-induced NLRP3 inflammasome priming; whereas P2X7R is 
a key protein mediating Alu RNA-induced NLRP3 inflammasome 
activation and consequent RPE degeneration [37].

The exact mechanisms by which NLRP3 inflammasome is 
activated remain elusive. The P2X7R activation, generation of 
Reactive Oxygen Species (ROS), and lysosomal destabilization are 
among the generally supported mechanisms. P2X7R and ROS are 
major contributors to the activation of NLRP3 inflammasome in 
other systems [81,82]. Interestingly, activation of P2X7R also leads 
to ROS production in macrophages [88,89], and induces lysosomal 

alkalinization, lipid oxidation, and reduced phagosome clearance in 
ARPE-19 cells [19]. Therefore, activation of the P2X7R could be the 
key to activation of NLRP3 inflammasome.

The Proposed Model of the P2X7R-Mediated 
Signaling that Leads to AMD

Based on recent discoveries discussed above, we propose a model 
of P2X7R-mediated signaling pathways that lead to RPE senescence, 
RPE apoptosis and AMD (Figure2). Tissue insult such as infection 
and inflammation not only can induce ATP release in an autocrine–
paracrine manner, but also can promote the expression of P2X7R. If 
the P2X7R is activated by the released ATP, it could increase the ROS 
levels that induce RPE senescence as part of the phenotype of early 
AMD. Activation of P2X7R could also lead to lysosome-phagosome 
dysfunction, RPE apoptosis and geographic atrophy or dry AMD 
through extracellular Ca2+ influx and pannexin-1 membrane pore 
formation. Activation of P2X7R by ATP could also trigger K+ efflux 
and pannexin-1 membrane pore formation. K+ efflux and pannexin-1 
membrane pore formation activate NLRP3 inflammasome. This 
activation of NLRP3 inflammasome triggers the secretion of IL-18 
which induces RPE degeneration and dry AMD.

On the other hand, activation of P2X7R by ATP can also activate 
p38 which mediates Monocyte Chemoattractant Protein-1 (MCP-
1), interleukin 8 (IL-8) and Vascular Endothelial Growth Factor 
(VEGF) secretion. IL-8 and VEGF promotes vessel growth, leading to 
wet AMD. MCP-1 can attract and activate mononuclear phagocyte. 
Activated mononuclear phagocytes can kill RPE cells [90,91], leading 
to dry AMD. It is also possible that activated mononuclear phagocytes 
can promote vessel growth, leading to wet AMD [8].

Conclusions
Collectively, recent advances provide greater insight into 

P2X7R-mediated critical signaling pathways in the RPE and AMD, 
including (1) the Ca2+-mitochondrial pathway, leading to RPE and 
photoreceptor apoptosis; (2) the NLRP3 inflammasome pathway, 
resulting in production and secretion of IL-18; and (3) phagosome-
lysosome pathway, triggering impaired autophagic degradation. 

Several P2X7R antagonists have been demonstrated to be effective 
for inhibiting or blocking P2X7R-mediated RPE and photoreceptor 
death and dysfunction in both in vitro and in vivo models of AMD. 
Moreover, a recent genetic study has demonstrated that a haplotype 
containing two rare genetic variants of P2X4R and P2X7R is 
associated with increased susceptibility to AMD [35], underscoring 
the importance of the P2X7R and the P2X4R in AMD.

In the light of the recent discoveries on the roles of the P2X7R in 
the RPE and AMD, it is expected that P2X7R- and P2X4R-mediated 
new and key pathways that contribute to AMD pathogenesis would 
be identified, providing impetus for the development of preventive 
and therapeutic strategies for AMD, via targeting P2X7R and P2X4R, 
their ligands, their downstream pathways and/or protein-protein 
interactions. 
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