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Abstract
There is increasing evidence indicating that secreted RNA molecules may 

act as paracrine/endocrine mediators, capable of modifying the phenotype of 
target cells. Several studies have focused on transporters of extracellular RNAs, 
indicating that they may be present in biological fluids in a non-encapsulated 
form, or encapsulated within membrane vesicles. Cell-derived extracellular 
vesicles, including exosomes and microvesicles, have recently emerged 
as a well-preserved evolutionary mechanism of cell-to-cell communication. 
It has been shown that extracellular vesicles can contain several species of 
RNAs, including mRNAs, microRNAs and long non-coding RNAs. Vesicle-
encapsulated extracellular RNAs are protected from degrading enzymes, 
and can be delivered after internalization or membrane fusion to target cells. 
The transfer of nucleic acids may induce epigenetic changes in the recipient 
cells with functional consequences. Here we discuss the role of extracellular 
vesicles in the cross talk between stem and injured cells, and in the resulting 
reprogramming of these cells.

as the presence of overlapping characteristics between exosomes and 
microvesicles, the use of the inclusive term of “extracellular vesicles” 
(EVs) has been suggested. Vesiculation, which occurs either within 
the cell or on the cell surface, allows accumulation of transmembrane 
proteins, cytosolic proteins and nucleic acids, all specific to the cell 
of origin [4]. Therefore, EVs are potentially capable of different 
biological activities according to their cargo [5]. Transfer of bioactive 
lipids, proteins, receptors, mRNA, microRNA (miRNA) and long 
non-coding RNA (lncRNA) may change the phenotype and function 
of the recipient cells [6-14]. In particular, the exchange of miRNAs, 
which regulate most protein-encoding genes, and of lncRNAs, which 
modulate the epigenome, may influence several physiological and 
pathological processes. Therefore, the discovery of EV-mediated 
intercellular communication has revealed an unpredicted plasticity of 
the cellular system. In the context of stem cell biology, the exchange 
of genetic information may explain mechanisms involved in the 
maintenance of stemness or differentiation, as well as in stem cell-
mediated tissue repair after injury.

Extracellular Vesicles as Transporters of exRNAs
The discovery that EVs contain nucleic acids provides an 

explanation for the proposed role of exRNA in cell-to-cell 
communication [2]. In fact, vesicle-encapsulated RNA is protected 
from extracellular RNase, making EVs an attractive vehicle for the 
intercellular exchange of RNA. Pivotal studies by Ratajczak et al. [15] 
showed that murine embryonic stem cells release EVs containing 
stem cell-specific mRNA. Similarly, tumor-derived EVs were shown 
by Baj-Krzyworzeka et al. [16] to contain growth factor mRNAs and 
to transfer them to monocytes. The mRNA present in EVs was shown 
to be functional when incorporated into recipient cells. Indeed, 
Valadi et al. [17] provided evidence that EV-transferred mRNA can 
be translated into proteins, and we also found that, following uptake 
of EVs carrying GFP mRNA, endothelial cells start to produce the 
GFP protein [18]. The inter-species exchange of RNA, via EVs, 

Introduction
Cell differentiation and cell phenotypes are critically modulated 

in a defined microenvironment by exchange of information between 
cells. Emerging evidence indicates that, in addition to cytokines, 
chemokines and hormones [1], secreted RNA molecules [2] may 
act as endocrine/paracrine mediators. Extracellular RNAs (exRNAs) 
have been identified in all human biological fluids, either in a vesicle-
encapsulated form, or as nuclease-resistant complexes with RNA 
binding proteins such as high-density and low-density lipoproteins 
and Argonaut proteins. 

Vesicle-encapsulated exRNAs are protected from RNA-
degrading enzymes and can be delivered locally or at distant sites as 
a consequence of vesicle uptake by target cells. Cell-secreted vesicles 
express membrane receptors of donor cells, and may interact with 
cells bearing counterpart receptors or through surface-expressed 
lipids. As a result of this interaction, vesicles are internalized into 
endocytic compartments or become directly fused with the plasma 
membrane, thus transferring their bioactive contents into recipient 
cells, inducing epigenetic changes of their phenotype. 

The release of pre-apoptotic vesicles and apoptotic bodies is 
known by long time. However, the role of vesicles released by healthy 
cells in the intercellular communication has only recently emerged. 

Non-apoptotic vesicles have been named in the literature on 
the basis of function, biogenesis or cell of origin as microparticles, 
prostatosomes, cardiosomes, tolerosomes, ectosomes, microvesicles 
and exosomes [3-5].

The term of exosomes is usually reserved to vesicles derived from 
the endosomal membrane compartment by exocytosis, whereas 
microvesicles are used to design vesicles generated by budding of 
cell plasma membranes [6,7]. Given the differences in biogenesis and 
composition of vesicles derived from different cellular sources, as well 
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further confirmed the functionality of the transferred RNA. Valadi 
et al. [17] showed that RNA carried by mouse mast cell exosomes 
was transferable in vitro to human mast cells, resulting in production 
of mouse proteins in the human mast cells. Moreover, human stem 
cell-derived EVs were shown to transfer mRNAs into mouse cells, 
which were subsequently translated into proteins not only in vitro but 
also in vivo [19,120]. Aliotta et al. [21] demonstrated that lung mRNA 
was transferred by EVs to bone marrow cells, inducing expression 
of lung specific proteins. Other RNA species were also shown to 
be present within EVs, namely miRNA and lncRNA. Valadi et al. 
showed that mouse and human mast cell exosomes contain miRNAs 
[17], which can be transferred altering gene expression in recipient 
cells. Yuan et al. [22] provided evidence for the transfer of miRNAs 
from mouse embryonic stem cells to fibroblasts. The miRNA content 
of EVs reflects that of the cell of origin; however, we found an 
enrichment of selected miRNAs within EVs that were released by 
human mesenchymal stem cells, suggesting an active process of RNA 
compartmentalization [23]. The presence of RNA-binding proteins 
within EVs may shed some light on the loading mechanism of RNA 
within exosomes/microvesicles [24]. For example, EVs derived from 
human mesenchymal stem cells (MSCs) were shown to carry Stau 1 
and 2, TIA, TIAR and HuR ribonucleoproteins, which are involved 
in the stability and trafficking of RNA between the nucleus and 
cytoplasm, as well as proteins of the Argonaute family involved in 
miRNA transport and processing [23]. In addition, Ago2 and GW182 
were found in exosomes that were released from monocytes [24]. 
Lipids and, in particular, ceramide have been also implicated in the 
selective accumulation of miRNAs inside EVs [25,26]. Knock-down 
of neutral nSMase2, involved in the synthesis of ceramide, was shown 
to decrease vesicular release of miR-16 and miR-146a [27]. Instead, 
chemical inhibition of nSMase2 tended to favor the release of miRNA 
in its non-encapsulated form, in association with HDL [25].

The question that still remains is “are the EV-transferred miRNAs 
functional?” In response, we found that some target proteins of 
miRNA carried by stem cell-derived EVs were down-regulated in 
recipient cells [23]. In addition, Zhang et al. [28] demonstrated that 
miR-150 delivered by EVs to endothelial cells induced functional 
alterations and modulated gene expression, including c-Myb 
expression. 

EV-Transferred ExRNAs Induce Changes in the Cellular 
Phenotype: Role in Stem Cell Biology

The concept that EV-encapsulated exRNAs may modulate the 
phenotype and function of target cells is a new paradigm in the 
interplay between cells. Increasing evidence has indicated that this 
mechanism of cell phenotype modulation has profound physiological 
and pathological implications. 

In the immune system, the exchange of miRNAs via exosomes 
between antigen-presenting cells (APC) and T cells has been recently 
shown to occur at the site of immune synapse [29,30], suggesting 
a critical role in the initiation and modulation of the immune 
response [31]. Extensive studies on the role of EVs in the transfer of 
genetic information have also been performed in the field of tumor 
biology. Tumor-derived EVs were found to strongly modify the 
cancer microenvironment, by acting on the phenotype of stromal 
cells, and by supporting tumor metastases and escape from immune 

surveillance [32]. Katakowski et al demonstrated that miR-146b 
carrying exosomes released by bone marrow stromal cells inhibit 
the growth of glioma xenograft in rats [33]. Microvesicle-mediated 
transfer of miR-233 was also found to be functionally active as it was 
able to induce macrophage differentiation [9]. Exosomal miRNAs 
were also shown to play an important role in communication between 
leukemia and endothelial cells [10]. Takahashi et al demonstrated 
that EVs transfer long non-coding RNAs which modulate hypoxia 
signaling pathways by reprogramming target cells [13].

The role of EV-transferred exRNA in stem cell biology was 
first addressed by Ratajczak et al. [15] who demonstrated that EVs 
were implicated in the preservation of pluripotency and in the 
undifferentiated propagation of stem cells in vitro. EVs released from 
murine embryonic stem cells (ESC) were shown to be highly enriched 
in mRNA for several pluripotent transcription factors and to express 
Wnt-3 protein. Once delivered to target cells, the transferred mRNA 
was translated into proteins, thus facilitating reprogramming of 
murine hematopoietic progenitors, enhancing their survival and 
expansion [15]. Dependency on horizontal transfer of mRNA 
was suggested by experiments based on RNase inactivation of EV-
shuttled RNA, which abrogated the biological effects. EV-mediated 
horizontal transfer of mRNA from endothelial progenitor cells (EPC) 
also accounted for reprogramming quiescent endothelial cells toward 
a pro-angiogenic phenotype [18]. We found that EVs secreted from 
EPC carry specific subsets of pro-angiogenic mRNA including those 
associated with PI3K/AKT and eNOS [18]. 

The functional role of EVs was demonstrated by the group 
of Quesenberry who focused on the ability of EVs to modify the 
phenotype of bone marrow cells by transfer of nucleic acids and 
proteins. In addition, Aliotta et al. [21] showed that EVs are able to 
transfer RNA from injured lung cells to bone marrow cells, inducing 
lung-specific gene expression such as surfactant B, and surfactant 
C and Clara cell-specific protein. Their work indicated that cell fate 
alterations were mediated by a RNA species acting as a transcription 
factor to induce long-term epigenetic phenotype changes. EV-
mediated reprogramming may provide an alternative explanation 
to transdifferentiation or fusion for the bone marrow stem cell 
plasticity observed during physiologic tissue repair. Based on these 
observations, Quesenberry and Aliotta suggested that information 
exchange, mediated by EVs, constitutes an integral component of 
the continuum model of stem cell biology, and contributes to the 
repair of injured tissue [34]. Thus, EVs may allow a mutual influence 
between stem and injured cells based on bidirectional transfer of 
information that results in functional and phenothipic changes. 
EVs released from somatic cells may influence stem cell plasticity; 
conversely, those released from stem cells may activate regenerative 
programs in cells survived to injury (Figure 1). We have studied this 
possibility in the kidney, where it is known that the repair following 
acute tubular injury mainly depends on the de-differentiation of 
tubular cells to a mesenchymal phenotype, with re-entry into the cell 
cycle of cells that have survived injury [35]. The beneficial effect of 
MSC-based therapy in acute kidney injury (AKI) models has been 
ascribed to paracrine mechanisms rather than trans-differentiation 
or fusion [36]. Therefore, in this context, EVs released from stem 
cells are potential candidates for reprogramming injured cells and 
for coordination of repair. Indeed, we have found that EVs from 
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human MSCs can mimic the biological effects of the cells of origin, 
promoting functional and morphological repair of glycerol-induced 
AKI [19]. After EV incorporation, renal tubular epithelial cells de-
differentiated to a stem cell-like phenotype, acquired apoptosis 
resistance, proliferated, in order to facilitate tubule repopulation, 
and finally re-differentiated into mature epithelial cells. MVs derived 
from MSCs were demonstrated to contain several mRNAs that were 
specific to the mesenchymal lineage, as well as mRNAs involved 
in the control of transcription, proliferation, cell fate and immune 
regulation [19]. The in vivo transfer of human mRNA to murine 
tubular cells and its transient translation into protein was observed 
[19]. Moreover, in a lethal model of cisplatin-induced AKI in SCID 
mice, EVs derived from MSCs were shown to protect mice from death, 
and significantly improved renal function by inducing up-regulation 
of the anti-apoptotic genes, BIRC8, Bcl2 and Bcl-xL, and down-
regulation of genes involved in the execution-phase of apoptosis, 
namely LTA, Casp1 and Casp8 [37]. Other studies in models of heart 
ischemia/reperfusion injury [38] and of 70% hepatectomy [20] also 
support the concept that RNA-mediated changes in cell phenotype 
after treatment with stem cell-derived EVs favor tissue regeneration. 

The exRNAs involved in cell reprogramming may also include 
miRNAs [39]. We screened the miRNAs present in MSC-derived 
EVs, and gene ontology analysis of their targets revealed a high 
expression of miRNAs implicated in cell differentiation and survival 
and in immune system regulation [23]. The EV-mediated transfer 
of miRNA to renal tubular cells was found to down-regulate some 
target proteins, suggesting functionality of transferred miRNAs. 

The relevance of miRNA transfer by EVs was particularly evident in 
a model of ischemia-reperfusion AKI treated with EVs released by 
EPC that are enriched in angiomiR miR-296 and miR-126 [40]. In 
this model, when miRNA-depleted EVs obtained by Dicer knock-
down EPCs were used, the beneficial effect of EVs on AKI recovery 
was significantly reduced. Similarly, EV depletion of the specific pro-
angiogenic miRNAs, as well as the use of antagomiRs, decreased the 
effectiveness of EVs [41].

Recently, the Quesenberry group demonstrated that EVs 
released by lungs [42] and prostate cancer cells [43] may modify the 
normal cell genetic profile, by conveying specific subsets of mRNA. 
Conversely, exRNA derived from normal cells or from stem cells 
may reprogram tumor cells to a more benign phenotype. Indeed, EVs 
derived from normal prostate cells were shown to reprogram prostate 
cancer cells, reversing their intrinsic chemoresistance and their 
anchorage-independent growth [44], and EVs derived from human 
liver stem cells were shown to inhibit growth and survival of HepG2 
hepatoma and primary hepatocellular carcinoma cells by delivering 
tumor suppressor miRNAs [45]. 

Xin et al. showed a crosstalk between MSCs and brain parenchymal 
cells, with transfer of miR-133b via EVs, and subsequent regulation of 
neurite outgrowth [46]. In addition, MSCs transfected with synthetic 
miR-133b were able to transfer this miRNA, via EVs, to astrocytes 
and neurons, regulating the gene expression, and favoring neural 
plasticity and functional recovery after stroke [47]. Yu et al. [48] 
have recently demonstrated that cardiomyocyte protection may be 
mediated, at least in part, by the transfer of the anti-apoptotic miR-

 
Figure 1: Schematic representation of EV-mediated bidirectional exchange of exRNAs between stem and injured cells. The transfer of genetic information from 
injured cells may induce differentiation of stem cells and expression of tissue specific phenotype. Conversely, stem cell-derived exRNAs may activate regenerative 
programs in recipient cells with activation of mechanisms of tissue self-repair.
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221/222, via EVs released from GATA-4 overexpressing MSCs. miR-
221/222 is known to decrease the expression of the pro-apoptotic 
gene p53 upregulated modulator of apoptosis (PUMA). Recently, it 
has been shown that EVs derived from embryonic stem cells may 
induce gene expression changes in Müller cells of retina by transfer 
of mRNA and miRNA [49]. Taken together, these experiments 
indicate that transfer of genetic material from stem cells to somatic 
cells may change their phenotype and function suggesting a possible 
exploitation for gene therapy [50].

Conclusions
Investigation into the biological relevance of exRNA-mediated 

signaling sheds a new light on several physiological and pathological 
processes, and opens new therapeutic perspectives. EVs emerge as an 
important, but not unique, transporter of exRNA. EVs may influence 
the phenotype of neighboring cells, by delivering their content 
locally, and by entering the circulation, or other biological fluids, 
they are also able to function at distant sites. The transfer of genetic 
information between stem and injured cells provides a new vision 
of cell plasticity. EVs released by stem cells retain several biological 
roles of the cells of origin, and activate regenerative programs in 
injured cells. However, further studies are necessary before stem cell-
induced EVs can effectively become candidates for use in therapy. In 
particular, healing exRNAs that are transported by EVs have yet to 
be identified. A better understanding of the mechanisms involved in 
exRNA compartmentalization within EVs may provide information, 
allowing production of engineered vesicles containing specific subsets 
of RNA. Moreover, as EVs are a non-homogenous population, it is 
essential to know which of the EV fractions contain curative exRNA, 
starting from the characterization of the biologically active population. 
Finally, the scalable production of EVs under Good Manufacturing 
Practice (GMP) conditions is a particular challenge. This nascent 
research field is promising, not only for a better characterization of 
pathogenic mechanisms, but also for the identification of diagnostic/
prognostic biomarkers and the development of new therapeutic 
approaches.
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