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Abstract
NAD-dependent SIRTuin (SIRT) family deacetylases promote longevity in 

multiple organisms including yeast, worms, and flies. In mammalian genomes, 
there are seven members (SIRT1-SIRT7) in the SIRTuin family, with the 
function of SIRT1 being extensively studied in the past 10 years. Notably, 
another SIRTuin family member SIRT6, originally identified as mono-ADP-
ribosyltransferase, has recently been drawing more and more attention since it 
can deacetylate histones and non-histone substrates, and has been emerging 
as critical regulators in diverse physiological and pathological scenarios 
including telomere maintenance, chromosome stability, DNA damage repair, 
glucose metabolism, mammalian aging, life span, and immunity. Dysregulation 
of SIRT6 leads to metabolic disorder such as type 2 diabetes and cancer. Here 
we review the recent advances of the function of SIRT6 in immune response, 
glucose metabolism, and tumorigenesis, and discuss its therapeutic potential in 
treating cancer.
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The ADP-ribosytransferase activity of SIRT6
SIRT6 was reported to have both ADP-ribosytransferase activity 

[20,21] and deacetylase activity [14,22-24]. Mono-ADP-ribosylation, 
typically performed by separate families of intra-and extracellular 
enzymes in vertebrates, is thought to be a general mechanism of 
reversible protein modification within mammalian organisms 
[25]. Intracellular mammalian ADP-ribosyltransferases target 
substrates including molecular chaperone GRP78, translational 
elongation factor 2, and β-subunit of heterotrimeric G-proteins while 
extracellular ones generally function in immune system [21,25].

Introduction
NAD-dependent SIRTuin (SIRT) family deacetylases, the class 

III histone deacetylases (HDAC), can extend lifespan of several lower 
model organisms including yeast, worms, and flies [1]. Mammalian 
genomes encode seven SIRTuin proteins which share a highly 
conserved NAD+-binding and catalytic core domain, but have distinct 
flanking N- and C-terminal extensions [2] (Figure1). Except SIRT4, 
most mammalian SIRTuins had previously been demonstrated to 
bear a NAD+-dependent protein deacetylases activity. A variety of 
substrates have been identified for SIRT1 [3]. SIRT4 was originally 
thought to only have ADP-ribosyltransferase activity [4,5]. However, 
recently, deacetylation data from David Rauh and colleagues 
revealed that all seven human SIRTuins have deacetylation substrate 
candidates including SIRT4 [6].

The subcellular localizations of SIRTuins are quite different 
[7] (table 1). SIRT6 and SIRT7 are nuclear proteins [8,9] (table 1). 
SIRT1, while predominantly in nuclear, can shuttle between cytosol 
and nuclear in various tissues in response to different stimuli [10]. 
Whereas, SIRT2 is located mainly in cytoplasm. Different from 
the above, the other three members, SIRT3, SIRT4, and SIRT5, are 
primarily found in mitochondria which participate in a variety of 
metabolic events associated with the mitochondrial activity [11,12].

In the SIRTuin family, SIRT1 was the founding member and had 
drawn more attention in the past 10 years. Notably, SIRT6 has been 
increasingly identified as crucial regulators for a variety of physiological 
and pathological events, ranging from telomere maintenance, 
chromosome stability, DNA damage repair, mammalian aging, life 
span, immunity to glucose metabolism and cancer [8,13-20]. Here we 
highlight the recent progress of SIRT6 studies in immune response, 
glucose metabolism, and tumorigenesis and discuss the therapeutic 
potential of SIRT6 modulators in treating cancers.
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Figure 1: Schematic overview of human SIRTuins. The catalytic core 
domains (blue boxes) are flanked by distinct N- (red boxes) and C-terminal 
extensions (pink boxes) in human SIRTuins.
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Early studies identified SIRT6  as mono-ADP-ribosyltransferase 
by regulating its own ribosylation [21]. Purified recombinant mSIRT6 
catalyzed the robust transfer of radiolabel from [32P]NAD to mSIRT6, 
suggesting that SIRT6 could regulate its own ADP-ribosylation. 
Notably, two highly conserved residues within the catalytic core 
of SIRT6 were required for this reaction. This reaction was likely 
mono-ADP-ribosylation because only the modified form could be 
recognized by an antibody specific to mono-ADP-ribose [21].

The auto-regulation of SIRT6 ADP-ribosylation raised the 
possibility that SIRT6 might target other proteins for ADP-
ribosylation and possibly played an important role in performing 
its biological activities. In line with its ADP-ribosylation regulation 
on itself, SIRT6 targeted poly[adenosine diphosphate (ADP)-ribose] 
polymerase 1 (PARP1) for ribosylation in DNA damage repair [20]. 
In most cases, ADP-ribosylation of arginine residues in substrates 
resulted in reversible inactivation of the protein [21,26]. However, 
mono-ADP-ribosylation of PARP1 by SIRT6 seemed to promote its 
activity [20]. This might be due to ADP-ribosylation of PARP1 by 
SIRT6 lying on lysine residue, suggesting a different outcome upon 
same modification at different amino acid residues. Under oxidative 
stress, SIRT6 is recruited to the sites of DNA double-strand breaks 
(DSBs), physically associates with PARP1, mono-ADP-ribosylates 
PARP1 on lysine residue 521, and stimulates DSB repair [20]. 
However, whether SIRT6 targets other signaling players for ADP-
ribosylation in certain biological contexts such as immune responses 
and cancers remains unexplored. 

The Deacetylase activity of SIRT6
Although early study reported SIRT6 as a mono-ADP-

ribosyltransferase, whereas a number of other studies implied 
that SIRT6 functions mainly as a deacetylases to regulate acetylation 
of histones and non-histone substrates. All seven human SIRTuins 
have deacetylation substrate candidates including SIRT4 and SIRT6, 
especially the former which had previously been only demonstrated 
to have ADP-ribosyltransferase activity [6]. SIRT6 has proved to be 

able to deacetylate histone 3 at different lysine residues with different 
outcome. By regulating histone 3 (H3) acetylation, SIRT6 functions 
as either a life-span modulator, a master regulator of glucose 
homeostasis, a tumor suppressor, or possibly a regulator of immune 
responses [14,18,24,27].

SIRT6 was regarded as a life-span modulator by deacetylating 
histone H3 lysine 9 (H3K9) at NF-кB target gene promoters to 
attenuate TNFα/NF-кB signaling. Without SIRT6, mammalians 
can’t live long and exhibits aging-like phenotype due to hyperactive 
NF-кB signaling. Surprisingly, haploinsufficiency of RelA rescues 
the early lethality and degenerative syndrome of SIRT6-deficient 
mice, suggesting an implication of SIRT6 regulation in TNFα/NF-кB 
signaling [24].

In addition, SIRT6 is a guardian for maintaining telomere and 
chromosome stability. Human SIRT6 protein can modulate telomeric 
chromatin by deacetylating histone H3 lysine 9 (H3K9) in an NAD+-
dependent manner. SIRT6 associates specifically with telomeres 
and is required for the stable association of WRN, the factor that is 
mutated in Werner syndrome thus contributing to the propagation of 
a specialized chromatin state at mammalian telomeres, which in turn 
is required for proper telomere metabolism and function. Consistent 
with the above notion, SIRT6 depletion leads to telomere dysfunction 
with end-to-end chromosomal fusions and premature cellular 
senescence and exhibit abnormal telomere structures that resemble 
defects observed in Werner syndrome, a premature ageing disorder. 
Hence, SIRT6 links chromatin regulation to telomere maintenance 
and a human premature ageing syndrome [24].

Not only H3K9 but also other lysine(s) at histone 3 including 
H3K56 can be deacetylated by SIRT6 [22,23]. In S. cerevisiae, 
acetylation of H3K56 occurs both globally on newly synthesized 
histones and at specific promoters during S-phase, and regulation 
of this histone mark is crucial for DNA replication and repair 
activity such as genomic stability, gene activity and heterochromatin 
silencing, and histone incorporation into nucleosomal chromatin 

Table 1: Overview of mammalian SIRTuins.
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[28-32]. In mammals, SIRT1 and SIRT2 can deacetylate H3K56Ac, 
which has recently been linked to stem cell-specific transcriptional 
networks, chromatin responses, DNA damage, and genomic stability 
[33-36]. Interestingly, deacetylation of H3K56 by SIRT6 may be 
cell cycle-dependent, thus revealing a role of SIRT6 in maintaining 
dynamic changes of H3K56 acetylation levels at telomeric chromatin 
in the cell cycle progression [23]. Noticeably, although only H3K9 
and H3K56 were reported to be deacetylated by SIRT6, however, it 
cannot rule out the possibility that the acetylation of other lysines 
on H3 or other histones may be also be targeted by SIRT6 or other 
SIRTuin members. Consistent with this notion, SIRT7 was reported 
to be able to deacetylate H3K18ac [37].

Besides histones (H3K9 and H3K56), non-histone substrates 
including at least DSB resection protein CtIP [C-terminal binding 
protein (CtBP) interacting protein] and GCN5 can also be 
deacetylated by SIRT6 [19,38]. Kaidi and colleagues discovered 
that human SIRT6 plays a central role in promoting DNA end 
resection, a crucial step in DNA double-strand break (DSB) repair 
by homologous recombination. Biochemically, SIRT6 interacts with 
and deacetylates CtIP to promote resection. In line with this notion, 
SIRT6 depletion impaired the accumulation of replication protein 
A and single-stranded DNA at DNA damage sites, slowed down 
rates of homologous recombination, and sensitized cells to DSB-
inducing agents. Moreover, a nonacetylatable CtIP mutant alleviated 
the effect of SIRT6 depletion on resection, thus uncovering CtIP 
as a key substrate by which SIRT6 facilitates DSB processing and 
homologous recombination and further supporting a role of SIRT6 
in promoting genome stability [19]. Interestingly, besides CtIP, the 
acetyltransferase GCN5 can also be deacetylated by SIRT6. Data 
from John E. Dominy, Jr. and colleagues suggested that SIRT6 is able 
to directly bind to GCN5, deacetylate it at K549, as well as induce 
changes in the phosphorylation of the protein that ultimately yield an 
increase in GCN5 activity and an increase in PGC-1α acetylation and 
activity to suppress hepatic gluconeogenesis [38].

Immune response regulation by SIRT6
TNFα/NF-κB signaling plays an important role in the regulation 

of both the innate and adaptive immune responses and carcinogenesis 
and the dysregulation of which leads to the onset of tumorigene sis 
and tumor malignancy [3,39,40]. Deacetylation of H3K9 by SIRT6 
at NF-кB target gene promoters raises the possibility that SIRT6 may 
be involved in normal and/or pathological  immune  response and 
tumorigenesis. Consistent with this notion, Van Gool and colleagues 
discovered that intracellular NAD concentration promotes TNFα 
synthesis in activated immune cells and SIRT6 regulates TNFα 
production by acting at a post-transcriptional step in a NAD+-
dependent manner [13].

In line with the above data, it was recently reported that SIRT6 
promotes TNFα secretion through hydrolysis of long-chain fatty 
acyl lysine [41]. The crystal structure of SIRT6 reveals that it has a 
large hydrophobic pocket, which can accommodate long-chain fatty 
acyl groups. SIRT6 efficiently removes long-chain fatty acyl groups, 
such as myristoyl, from lysine residues K19 and K20 of TNFα, which 
modulates TNFα secretion [41]. In this regard, SIRT6 promotion of 
TNFα secretion seems contrast to previous observation that SIRT6 
deacetylates H3K9 at NF-кB target gene promoters, which attenuates 
TNFα/NF-κB signaling. How to explain this remains obscure. 

SIRT6 was also suggested to play an anti-inflammatory role in 
mice by inhibiting c-Jun-dependent expression of proinflammatory 
genes [42]. Xiao and colleagues found that SIRT6-null mice developed 
chronic liver inflammation starting at ~2 months of age, and all 
animals were affected by 7-8 months of age. Furthermore, deletion 
of SIRT6 in T cells or myeloid-derived cells was sufficient to induce 
liver inflammation and fibrosis, suggesting an anti-inflammatory 
role of SIRT6 in immune responses [42]. Biochemically, SIRT6 
interacts with c-Jun and deacetylates histone H3 lysine 9 (H3K9) at 
the promoter of proinflammatory genes which expression involves 
the c-Jun signaling pathway. In addition, SIRT6 was also reported to 
function as a negative regulator of cardiac hypertrophy by interacting 
with c-Jun and deacetylating H3K9 to suppress the promoter of IGF/
AKT signaling [27].

SIRT6 Regulates Glucose homeostasis and Fat 
Metabolism

SIRT6 was recently regarded as a master modulator of glucose 
homeostasis by regulating histone H3K9 acetylation to control the 
expression of multiple glycolytic genes [18]. Specifically, SIRT6 
appears to function as a corepressor of the transcription factor 
Hif1α to regulate nutrient stress responses. In line with this notion, 
SIRT6-deficient cells show increased Hif1α activity and exhibit 
increased glucose uptake with upregulated glycolysis and diminished 
mitochondrial respiration, thus revealing a role for SIRT6 as a master 
regulator of glucose homeostasis and may provide the basis for the 
therapeutic potential of SIRT6 in metabolic diseases, such as diabetes 
and obesity [18].

It is known to us that under various conditions, mammals have 
the ability to maintain blood glucose concentration within a narrow 
range. Dysregulation of hepatic glucose production (HGP) may 
lead to diabetic hyperglycemia. HGP is dynamically controlled by a 
signaling/transcriptional network containing PGC-1α, a key mediator 
of gluconeogenic enzyme. PGC-1α’s activation of gluconeogenic gene 
expression is determined by its acetylation state, which is reversibly 
controlled by the acetyltransferase GCN5 and the deacetylase SIRT1. 
Interestingly, another SIRTuin member, SIRT6, is also involved in 
HGP by affecting PGC-1α acetylation. Surprisingly, different from 
SIRT1 and other SIRTuins, SIRT6 positively regulates PGC-1α 
acetylation by deacetylating and activating the acetyltransferase 
GCN5 and suppresses hepatic gluconeogenesis. Consistently, SIRT6 
depletion decreases PGC-1α acetylation and promotes HGP and 
ectopic re-expression suppresses gluconeogenic genes and normalizes 
glycemia, suggesting a therapeutic potential of SIRT6 in treating 
insulin-resistant diabetes [38].

Not only glucose homeostasis but was fat metabolism also 
affected by SIRT6. Liver-specific deletion of SIRT6 in mice causes 
profound alterations in gene expression, leading to increased 
glycolysis, triglyceride synthesis, reduced β-oxidation, and fatty liver 
formation. Clinically, SIRT6 levels in human fatty liver samples were 
significantly lower than that of normal controls. These data together 
suggests that SIRT6 plays a crucial role in fat metabolism and has 
therapeutic potential for treating fatty liver disease, the most common 
cause of liver dysfunction in humans [43].

The Tumor-Suppressive Effects of SIRT6
In line with its central regulation on telomere maintenance, DNA 
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repair and metabolism, it is not surprising that SIRT6 is involved 
in cancer metabolism and functions as a tumor suppressor, and 
subsequently, down-regulation or depletion of SIRT6 protein leads 
to tumor progression. Except its ability to attenuate TNFα/NF-κB 
signaling by deacetylating H3K9 at NF-кB target gene promoters 
[14], SIRT6 also plays an important role in cancer metabolism [16].

Reprogramming of cellular metabolism named Warburg effect 
during tumorigenesis was known for many years, but the molecular 
mechanisms regulating this switch remained a mystery. Until 
recently, Sebastian and colleagues elegantly demonstrated that SIRT6 
functions as a tumor suppressor to regulate aerobic glycolysis by 
modifying histone acetylation and repressing MYC transcriptional 
activity in cancer cells [16]. Loss of SIRT6 or transformed SIRT6-
deficient cells leads to tumor formation or increased glycolysis and 
tumor growth, implying a role of SIRT6 in both establishment and 
maintenance of cancer. Consistently, by using a conditional SIRT6 
allele, they showed that SIRT6 deletion in vivo increased the number, 
size, and aggressiveness of tumors. Moreover, they discovered that 
SIRT6 was selectively down-regulated in several human cancers. 
Hence, these observations together highlighted a role of SIRT6 as a 
critical modulator in cancer metabolism [16].

Our data also showed that protein expression of SIRT6 was 
reduced in colon cancers, raising the possibility that SIRT6 might play 
a key role in tumor suppression [17]. Using a proteomic approach, 
we identified the ubiquitin-specific peptidase USP10, a known 
tumor suppressor [44], as one of the SIRT6-interacting candidates 
[17]. Mechanistically, USP10 removes ubiquitin from SIRT6 to 
protect it from proteasome-mediated degradation. In addition, 
USP10 enforced the ability of SIRT6 to suppress the transcriptional 
activity of the c-Myc oncogene, which was recently demonstrated by 
Sebastian and colleagues [16], thus inhibiting cell-cycle progression, 
cancer cell growth, and tumor formation [17]. This conclusion was 
further supported by the observation that a significant reduction in 
both USP10 and SIRT6 protein expression was monitored in human 
colon cancers. Hence, previous data and ours together suggest that 
SIRT6 plays a key role in Warburg effect during the initial stage of 
tumorigenesis or thereafter maintenance of cancer.

Modulation of SIRT6 Expression and Activity  
SIRT6 was, at least, transcriptionally regulated by c-Fos, p53, or 

a complex containing SIRT1, FOXO3a, and NRF1 [43,45,46] (Figure 
2). It was recently found that SIRT1 forms a complex with FOXO3a 
and NRF1 on the SIRT6 promoter and positively regulates expression 
of SIRT6, which, in turn, negatively regulates glycolysis, triglyceride 
synthesis, and fat metabolism by deacetylating histone H3 lysine 9 in 
the promoter of many genes involved in these processes [43].

In addition, SIRT6 was shown to be positively regulated by p53 
under standard growth conditions [45]. Interestingly, it seemed 
that p53 exhibited opposite effects on SIRT1 and SIRT6 levels since 
compared to wild type mice, p53-/- mice exhibited higher SIRT1 levels 
[47], but lower SIRT6 levels [45]. It is now known to us that p53 
regulates SIRT6 level, however, whether SIRT6 regulates p53 protein 
level remains a mystery. Further analysis is required to determine 
whether p53 level is regulated by SIRT6 by detecting p53 level in 
SIRT6-/- cells or by other methods. 

Moreover, c-Fos was recently reported to be able to induce SIRT6 

transcription, which repressed survivin by reducing histone H3K9 
acetylation and NF-кB activation at the liver cancer initiation stage 
[46]. Min and colleagues discovered that increasing SIRT6 protein 
level or targeting the anti-apoptotic activity of survivin at the initiation 
stage of cancer significantly impaired liver cancer development. 
Furthermore, a specific expression pattern with increased c-Jun-
survivin and attenuated c-Fos-SIRT6 levels was identified in human 
dysplastic liver nodules, but not in malignant tumours [46]. Thus 
SIRT6 links histone modification to stress response in liver tumour 
initiation. This is of great importance since it not only helps us to 
understand stage-dependent oncogenic mechanisms but also reminds 
us that it may be targeted to prevent liver tumorigenesis at the cancer 
initiation stage. 

It was previously known that SIRT1 was involved in the regulation 
of lifespan by nutrient availability [47]. Interestingly, not only SIRT1 
but SIRT6 was also found to be involved in lifespan regulation by 
nutrient condition [45]. Yariv Kanfi and colleagues showed that 
SIRT6 was regulated by nutrient availability at the post-transcription 
level. Levels of the mammalian SIRTuin, SIRT6, increased upon 
nutrient deprivation in cultured cells, in mice after starvation, as well 
as in rats fed a calorie-restricted diet. The increase in SIRT6 levels 
was not via an increase in SIRT6 transcription but due to stabilization 
of SIRT6 protein. These observations implied  that at least two 
SIRTuins, SIRT1 and SIRT6, are involved in the regulation of lifespan 
by nutrient availability [45].

The protein stability of SIRT6, not only was reported to be 
regulated by nutrient availability, but also shown to be regulated by 
the ubiquitin ligase  CHIP  (carboxyl terminus of Hsp70-interacting 
protein) or deubiquitinase USP10 [17,48] (Figure 2). Ronnebaum 
and colleagues found that CHIP  over-expression increases SIRT6 
protein expression without affecting SIRT6 mRNA level. In addition, 
SIRT6 protein half-life is significantly reduced due to an increase 
in proteasome-mediated degradation in CHIP-deficient cells. 

Figure 2. Schematic summary of SIRT6 targets and regulators.
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Mechanistically, SIRT6 is mono-ubiquitinated by CHIP at K170, 
which stabilizes SIRT6 and prevents SIRT6 canonical ubiquitination. 
Furthermore, in CHIP-depleted cells, SIRT6 K170 mutation increases 
SIRT6 half-life and prevents proteasome-mediated degradation. 
Most importantly, the absence of CHIP leads to the global decrease 
in SIRT6 expression and decreased SIRT6 promoter occupancy, 
which increases histone acetylation and promotes downstream gene 
transcription. Thus cells lacking CHIP are hypersensitive to DNA-
damaging agents, and DNA repair and cell viability can be rescued 
by over-expression of SIRT6 [48]. Since SIRT6 interacts with both 
HSP70 [17], and carboxyl terminus of Hsp70-interacting protein, 
CHIP [48] implies that SIRT6 may form a complex with both proteins 
and thus links epigenetic regulation to protein quality control to 
influence pathways that regulate the biology of aging [48]. Notably, 
further investigations need to be explored to determine which E3 
ubiquitin ligase negatively regulates SIRT6 protein stability and 
determine whether SIRT6 is post-translationally regulated by other 
enzymes such as MAP3K7/TAK1, which is recently shown to be able 
to interact with SIRT6 [17].

Therapeutic Potential of SIRT6 Modulators
A variety of small molecules have been shown potential for 

treating human diseases based on their modulation on SIRTuin 
activity [49,50]. Some SIRTuin activators are able to be used to 
treat diabetes [51] and extend life-span [52], whereas some SIRTuin 
inhibitors can suppress cancer cell growth and induce apoptosis [53-
61]. However, the small molecular modulators especially activators 
for SIRT6 are underdeveloped due to its weak enzyme activity and 
complex biological effects. 

Previously, a fluorescence resonance energy transfer (FRET)-
based assay where a donor dye and an acceptor dye were connected 
to an acetyl peptide substrate was developed to screen SIRTuins 
modulators. However, deacetylation followed by trypsin digest 
disrupted the FRET signal [62]. Another method was a fluorogenic 
assay that coupled the deacetylation to the trypsin-catalyzed amide 
bond hydrolysis to release a fluorescent small molecule, 7-amino-4-
methylcoumarin (AMC) [63]. The advantage of the fluorogenic assay 
using AMC-acetyl peptide is that it can be easily miniaturized and 
automated for high throughput analysis and has been used to screen 
deacetylase modulators [51,52].

Recently, by virtue of newly-discovered activity of SIRT5 
(demalonylase and desuccinylase) [64] and SIRT6 (defatty-acylase) 
[41], Hu and colleagues developed a fluorogenic high-throughput 
assay based on the activity of SIRTuins to screen SIRTuin modulators 
[61]. They elegantly designed distinct peptides from different 
SIRTuins for the fluorogenic assay. AMC-acetyl peptides were used 
for SIRT1, 2 and 3, AMC-succinyl peptides for SIRT5, and AMC-
myristoyl peptides for SIRT6 in the fluorogenic assay. The more 
efficient enzyme activities of SIRT5 and SIRT6 have enabled the 
development of a high-throughput assay for both proteins since these 
novel activities are several hundred fold higher than the corresponding 
deacetylase activity [65]. Through this method, they successfully 
identified a peptide named AcEALPK(MyrK)-AMC for SIRT6, which 
was thereafter used to screen known  SIRTuin inhibitors including 
nicotinamide [66], SIRTinol [67], AGK-2 [68], Cambinol [53], and 
Tenovin-1 [69]. Surprisingly, among all the compounds tested, only 

nicotinamide showed the best inhibition (57%) at 200 μM, whereas 
other compounds showed less than 50% inhibition at 200 μM. Most 
importantly, it tells us that most known SIRTuin inhibitors cannot 
inhibit SIRT6 very well and need to be further investigated for SIRT6 
inhibition.

Concluding Remarks
The ability of SIRT6 to regulate multiple physiological processes 

have been recognized and dysregulation of which has been connected 
to inflammatory disease, metabolic disorder, and even cancers. 
This raises the possibility that SIRT6 may be targeted for disease 
therapy. However, how to make use of the pleiotropic effects of 
SIRT6 (demyristoylation, mono-ADP-ribosylation, deacetylation) 
for treating disease remains a big challenge to us. Albeit a variety 
of studies supporting that SIRT6 has tumor suppressive function, 
however, different voice appeared. Noticeably, in contrast to its 
down-regulation in certain cancers, SIRT6 was recently reported to 
be upregulated in lymphoma [70]. Furthermore, the ability of SIRT6 
to regulate myristoylation, mono-ADP-ribosylation, and histone or 
non-histone acetylation, makes it a good target for disease therapy 
but the pleiotropic effects of SIRT6 must be distinguished before its 
modulators are applied to certain clinical cases. Finally, although this 
article is far from satisfaction to cover every aspects of the function 
of SIRT6, we do hope that it can help our readers to understand 
the recent advances of the complex biological effects of SIRT6, thus 
paving the way for discovering an appropriate approach to treat 
cancers and other diseases
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