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Editorial
Age-related Macular Degeneration (AMD) is the leading cause of 

irreversible central vision loss in the elderly [1–3]. AMD is a complex 
disorder from the interaction of aging with multiple genetic and 
environmental risk factors. The late stage of AMD can manifest as 
either Geographic Atrophy (GA) or Choroidal Neo Vascularization 
(CNV). The pathogenesis of AMD is still under-investigation. 
Recently, the abnormal of epigenetic factors such as DNA methylation 
and histone acetylation/ deacetylation have been recognized as an 
important contributor for the development of AMD, and one of the 
hot topic in the study of the involvement of epigenetic factors is the 
histone deacetylase enzyme Mammalian Sirtuin 1 (SIRT1) [4-9].

SIRT1 is a histone deacetylase converting enzyme, functioning 
as a NAD+-dependent histone deacetylase [10]. SIRT1 regulates cell 
senescence, DNA damage repair, apoptosis [11] and longevity in 
response to caloric restriction in many organisms, including yeast, 
worms, flies, and possibly mammals [12]. SIRT1 plays an important 
role in normal and pathologic conditions [13]. Recently, SIRT1 has 
been shown not only to affect histone acetylation but also to target a 
variety of non-histone proteins, including p53, nuclear factor-kappa 
B (NF-κB), E2F1, peroxisome proliferator-activated receptor γ co-
activator 1α (PGC-1α) and Hypoxia-Inducible Transcription Factors 
(HIF) [14,15]. 

SIRT1 is probably involved in the pathogenesis of AMD from 
some of recent reports. Peng C. et al. displayed that SIRT1 expression 
was down-regulated in both aged human retina and aged RPE cells 
from both AMD and non-AMD donors [16]. In addition, the SIRT1 
mRNA expression level and self-renewal ability were significantly 
decreased with age in retinal stem cells, whatever from rats or 
humans. Although different SIRT1 expression levels were showed in 
these articles, at least the results suggest that SIRT1 plays a role in 
the pathogenesis of the disease. Dysfunction and apoptosis of RPE 
cells are well known major factors that contribute to the pathogenesis 
of AMD. In young RPE cells, basal levels of p53 were low. By 
contrast, aged RPE showed increased expression of P53, which 
is a pro-apoptotic factor as a downstream of SIRT1 [17]. Further 
study revealed that aging robustly increased p53 phosphorylation 
and acetylation, which disrupt the interactions of P53 with Mdm2, 
leading to P53 stabilization [17]. On the other side, pretreatment 

Editorial

SIRT1 and Age-related Macular Degeneration
Ouyang S1 and Guo H2*
1Department of Ophthalmology, Central South University, 
China
2Zhengzhou Aier Eye Hospital, Aier School of 
Ophthalmology, Central South University, China

*Corresponding author: Guo H, Department of 
Ophthalmology, Central South University, #99 Hanghai 
Road, Zhengzhou Aier Eye Hospital, Zhengzhou, 45000, 
China

Received: May 21, 2016; Accepted: May 23, 2016; 
Published: May 24, 2016

of cells with resveratrol (a SIRT1 activator) significantly prevented 
increases of P53 acetylation and phosphorylation and eventually 
inhibited caspase-3-dependent RPE apoptosis. 

Inflammation plays a major role in the pathogenesis of 
AMD. Amyloid beta (Aβ), a known constituent of drusen, can 
induce chronical inflammation [18]. Interesting, SIRT1 is also 
an inflammatory inhibitor. Treatment with SRT1720, a potent 
SIRT1 agonist, significantly attenuated Aβ-induced upregulation 
of interleukin (IL)-6, IL-8, and matrix metalloproteinase-9 (MMP-
9), whereas the inhibitory effects of SRT1720 on Aβ-induced 
upregulation of IL-6, IL-8, and MMP-9 were attenuated in the cells 
in which SIRT1 expression was knocked down [18]. In addition, 
pretreatment with SRT1720 inhibited the deleterious effects of Aβ on 
morphology and barrier function of RPE monolayers. Knockdown 
of SIRT1 significantly abolished the protective effect of SRT1720 
on Aβ-induced barrier disruption [18]. The nuclear factor-kappa 
B (NF-κB) has been recognized as key inflammation switch. SIRT1 
inhibits NF-κB activation and in contrast, NF-κB signaling and 
inflammatory response can suppress the SIRT1 activity [19]. SIRT1 
activation attenuated Aβ-induced inflammation by suppressing NF-
κB activation, the transcription of which regulates expression of IL-
6, IL-8, and MMP-9. These results demonstrated that Aβ-induced 
inflammation and RPE barrier disruption are regulated by the SIRT1/
NF-κB pathway [18].

CNV causes more serious and rapid vision loss than other forms 
of AMD. Previous studies described the key role of SIRT1 as a critical 
regulator of angiogenesis [20,21]. The expression of SIRT1 is more 
frequent in human CNV membranes than non-AMD donor eyes 
[22]. Another study demonstrated that hypoxia initiates SIRT1 and 
augments HIF-2α, which in turn activates and releases VEGF [23]. 
Inhibiting the activity of SIRT1 properly is a promising method to 
cure retinal neo vascular diseases. Interestingly, other reports showed 
different results, in vitro study, treatment ARPE-19 cells with SIRT1 
inhibitor (nicotinamide) lead to decreased secretion of certain 
proangiogenic factors, such as VEGF-A, platelet-derived growth 
factor B Band angiogenin [22]. Further, resveratrol suppressed VEGF 
secretion induced by inflammatory cytokine (IFN-ɣ, TNF-a, IL-1β), 
TGF-β and hypoxia without influencing anti-angiogenic endostatin 
and PEDF secretion [24]. Another experiment revealed that SIRT1 
pathway is involved in the mechanism of resveratrol inhibiting 
hypoxic-induced choroidal vascular endothelial cells proliferation 
through down-regulating the levels of HIF-1a, thus inhibiting VEGF 
secretion [25] as well as promoting apoptosis through SAPK/JNK 
pathway. Khan A et al., demonstrated that resveratrol can inhibit 
pathological angiogenesis both within and outside the eye in vivo 
and in vitro by a SIRT1-independent pathway [26]. The discrepancy 
of the effects of SIRT1 on angiogenesis may be due to the different 
activators or inhibitors used indifferent experiments and the other 
conditions used in the different experiments. Further studies should 
be performed to identify the accurate effect of SIRT1 on CNV 
formation.
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Taken together, SIRT1 may be important for maintaining RPE 
cells function and protecting them from apoptosis induced by 
oxidative stress or chronic inflammation damage. However, there 
are still some controversies regarding the function of SIRT1 in the 
pathogenesis of AMD, for example, are SIRT1 an angiogenesis 
inducer or inhibitor in neovascularization in CNV and are the SIRT1 
activators suitable for the application in the treatment of human 
AMD? Further research is needed for clarify these questions.
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