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Abstract

Mammals and birds have developed remarkably larger brains as well as 
a constant and warm body temperature, in contrast to other vertebrates and 
invertebrates. What is the benefit of a constant and warm temperature on 
brain signaling and large size brain development? Our previous experimental 
and computational studies [1] demonstrated that cortical action potentials 
are remarkably more energy efficient in a warm temperature rather than in a 
cold temperature. This study revealed that a constant temperature is critical 
in ensuring the reliable and accurate neural coding to sensory signals based 
on computational studies of the classical Hodgkin-Huxley neuronal model. 
An increase of temperature variance during neural responses to a repeated 
signal is correlated with a gradual degeneration of neural response reliability. In 
addition, computer simulations also suggested that temperature around 36-40oC 
may be a special range for cortical neurons to firing spikes more reliably than 
other temperature conditions. These results suggest that a warm and constant 
temperature have been critical for the accurate neural coding and reliable intra-
neuronal communication that may be necessary for development of large brain 
circuit for endothermic animals.

Huxley types of cortical neuronal models that were developed in my 
previous experimental studies on cortical neurons [1,4].

Results
An aperiodic signal s(t) was presented repeatedly to the neuronal 

model for a hundred times (for each trial there was an additional 
Gaussian colored which mimicked synaptic noise added to the 
neuron was repeated without change for all trials). The temperature 
value of the model neuron for each trial had a fluctuation (quantified 
by standard variance σT) around an average value (e.g., 35oC in Figure 
1A). Computer simulations revealed that temperature variance 
may heavily degrade the reliable neural response to an input signal. 
Figure 1A shows that with a trial to trial variance in temperature 
(mean 35oC, standard deviation σT = 5oC), the spiking responses of 
the model neuron to the repeated signal were much less reliable with 
larger spike timing jitters than those in the responses of the neuron 
nearly constant temperature ((35oC) with a very small temperature 
variance σT = 0.1oC cross the trials (Figure 1B)). The raster plot (see 
Figure 1C) shows clearly the degeneration effect of temperature 
variance on the response reliability of the sensory neuron for the 
one hundred repeated trials of same input signal. Although at the 
beginning of the stimulus onset, the spiking responses were reliable 
for both situations, the spiking timings for case of σT = 5oC started to 
lose its timing precision after a hundred millisecond period of signal 
presentation. The post-stimulus time histogram (PSTH) ((yellow in 
Fig. 1C)) indicates that the neural coding responses lost their precise 
timings for each stimulus event in the situation of large temperature 
variance across stimulus trials. On the contrary, for the situation σT 
= 0.1oC, the spike timings for each stimulus event can be reproduced 
reliably with very small spike jitters (Figure 1D), and the PSTH 
displayed highly repeatable neural responses for all the stimulus 
features.

Introduction
Evolution develops larger brains in Mammals and birds than do 

fish, reptiles and amphibians [2]. Living mammals and birds are also 
distinguished as endotherms by their maintenance of a high body 
temperature around 36 -40oC, while fish, reptiles and amphibians 
are ectotherms whose body temperature generally varies with that 
of environment [3]. An enlarged brain and endothermia are thus 
two unique features of mammals and birds. Is this a coincidence, 
or is there some causal link between them? Energy required for 
the large brain increases greatly as the size of the brain circuit, the 
computational power and duties increase largely. The major part of 
brain energy is consumed for generating action potentials for coding 
signals of sensory world and synapse signals for communication 
among neurons.	 In a previous study, we found that the increase 
in body temperature associated with the evolution of warm-blooded 
animals had an energetic benefit [1]. The metabolic cost of generating 
action potentials is 4 to 10 fold lower in warm body temperature than 
in colder temperatures [1]. These results indicate that mammalian 
brains, although requiring a great deal of energy to operate, are 
actually more efficient than expected due to a warm body temperature.

If a warm temperature facilitates energy efficient cortical 
spikings in saving energy, what is the benefit to have a constant 
body temperature for mammalian and bird’s brains? Is it necessary 
for development of a large complex brain circuit with multi-layers? 
In cold-blood animals, their body temperature fluctuates with 
natural environments, by several to tens of degrees per day. How 
is this temperature condition variance correlated to the accuracy of 
neural coding and neural signal propagation. Surprisingly there is 
almost no study in this topic till now. Hence, to address the above 
issues, I have carried out a set of computational studies to examine 
how temperature fluctuations affect neural code based on Hodgkin-
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To give a quantitative measurement on the spike timing precision, 
spike timing jittering and response reliability were calculated for 
different values of temperature variance σT. Figure 1E shows that the 
averaged spike timing jittering increases from a small value of 2 ms to 
over 8 ms as a function of increase σT. The spike response reliability 
decrease from above 0.7 (value 1 is corresponding to the highest 
reliability) to a low value of below 0.3 when the temperature variance 
σT increases (see Figure 1F).

The HH cortical model used here is based on previous references 
where model parameters were all derived directly from experimental 
studies, and the spiking properties of the model matched experimental 
observations of cortical spikings well experimental observations of 
cortical spikings [1,4-7]. In the previous paper, this model shows a 
quantitatively similar relationship between temperature and spiking 
properties as in experimental studies on cortical neurons1. Since 
cortical neurons of mammals or birds are living in a body temperature 

condition around 36-40oC (generally body temperature is around 
36-37oC for mammals while 39-40 for birds), so it will be interesting 
to see whether this cortical neuronal model shows some particular 
preference for the 36-40oC temperature condition range.

Figure 2 shows the spiking timing reliability of a cortical model 
neuron in response to an aperiodic signal (as in Figure 1) measured 
in three temperature conditions, i.e., 16+-2oC, 37+-2oC, and 44+-
2oC, respectively. Interestingly, for the same temperature variance, 
the neuronal model showed a much lower spike timing jittering and 
higher spike timing reliability for T=37+- 2oC (Figure 2B) than in the 
other temperature conditions (Figure 2A and C). The same tests were 
done for all the other temperature conditions from T=5 to 45oC in 
order to see whether temperature around 37oC is particularly special 
and preferable for cortical neuronal model. Figure 2D shows that 
the spike timing jittering actually went through a global minimum 
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Figure 1: The importance of keeping a constant temperature for reliable neural coding. A. Top panel: the first 10 trials (of total 100 trials) of raw traces of action 
potentials produced from the cortical neuronal model in response to an aperiodic input signal. The temperature is same within one trial, but changes randomly from 
trial to trial with a mean value of 35oC, and standard deviation σT = 5oC. Bottom panel: an aperiodic signal obtained by convolution of a gaussian white noise with a 
low pass filter with time constant τ= 5 ms. B. Raw traces of the first 10 trials (of total 100 trials) of action potentials produced from the cortical neuronal model (top 
panel) in response to an aperiodic input signal (bottom panel, signal is same as in Figure 1A). The temperature is kept almost invariant across trials with a value of 
35oC with σT = 0.1oC. C. Raster plot of spike timings from the total 100 trials and the post-stimulus time histogram (PSTH) (in orange color) show that the reliability 
of spike response and the spike timing precision are gradually lost as a function of time for temperature condition in Figure 1A. D. Raster plot of spike timing and 
the PSTH (in orange color) show that the reliability of spike response and the spike timing precision are well kept as a function of time (Notice, an independent 
Gaussian white noise (zero mean, standard deviation 0.2) has been added to the input signal to mimic intrinsic synaptic noise sources for both Figure 1A and B). 
E. Spike timing jittering increases as a function of temperature variance σT. F. Spike timing reliability decreases as a function of temperature variance σT.
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when the mean temperature was around 34-37oC. correspondingly, 
the spike timing reliability also went through a global maximum 
when the mean temperature was around 34-37oC (see Figure 2E). For 
either a high temperature larger than 40oC or a temperature lower 
than 30oC, the neural spiking response lost its reliability for the same 
temperature variance across the repeated trials.

The trial to trial response variance in the above study is an 
outcome of the changes in neuronal excitability as a function of 
temperature. Figure 2F shows that the firing rate for the same signal 
increased linearly as the temperature was increased from 5 to 32oC. 
When the temperature was further increased from 32 to 40oC, the 
firing rate increased slowly, and then increased much more rapidly 
for temperature above 40oC. This temperature dependent increase in 
neuronal excitability has been reported in many experimental studies 
[1,8-12], however, its temperature-tuning property is not well-known. 
The present study suggests that the experiment-based HH cortical 
model studied here has more stable dynamics for temperature around 
36-40oC than other temperature conditions.

Based on previous study [1], the average sodium charge per action 
potential was decreased exponentially as temperature was increased 
(see Figure 2B in reference [1]), indicating a lower cost of spikes in the 
higher temperature compared to that of lower temperature. The total 
sodium charge of a neural response (product of sodium charge per 
spike and firing rate) versus temperature was first decreased and then 
increased, displaying a global minimum value for temperature around 
36-40oC (see Figure 2G). This suggests that a body temperature within 
36 to 40oC might be the optimal temperature condition for neurons 
to produce highly reliable and energy efficient electric signals within 
neurons to perform neural coding and communication.

Summary
Since maintenance of a constant warm body temperature is very 

energy demanding, what is the evolutionary benefit? This paper has 
studied for the first time the functional benefit of keeping a constant 
warm temperature in endothermic animals for reliable brain signaling. 
As it is well-known that during intra-neuronal communications, the 
small spike timing jittering is critical for reliable neural response 
propagation across multiple cortical layers [13,14]. Spike timing 
responses with larger spike timing jitters cannot propagate through 
a long-distance in feed forward networks with multiple-layers. 
Figure 1E and F suggest that neural response in the presence of large 
temperature variance has very unreliable spike timings, which may 
be hard to propagate reliably across multiple-layer cortical networks. 
A constant body temperature that enables highly reliable spiking 
timings may be critical for reliable brain signaling propagation 
and communication inside the brain. Therefore, the precise and 
repeatable neural response to the same object from neurons with a 
constant temperature should be crucial for the complex brain to carry 
out reliable computations, decision makings and rapid actions.

In summary, the constant and warm body temperature of 
homeothermic mammals and birds ensures highly efficient and 
reliable brain signaling. A body temperature that changes with the 
environment brings large uncertainty in neural code of input signals 
for ectothermic animal brains, thus may limit the development 
of complex brain architectures. Therefore, the constant body 
temperature may act as an effective firewall for protecting mammalian 
brain for precise and reliable signaling from being affected by the 
fluctuated temperature in the natural environment. Thus, to keep a 
constant and warm body temperature in endothermic animals may 
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Figure 2: A. Raster plot of spike timings and PSTH of neuronal model response for temperature conditions 16+-2oC (A), 37+-2oC (B) and 44+-2oC (C) respectively. 
D. Spike timing jittering versus mean temperature. Temperature variance σT is fixed as 2 for all mean temperature conditions. E. Spike timing reliability versus 
mean temperature. Temperature variance σT is fixed as 2 for all mean temperature conditions. F. The firing rate of the model neuron versus temperature for a given 
DC=0.5 x10-2 pA/um2 in the presence of intrinsic Gaussian white noise (zero mean, standard deviation 0.2). G.The total Na+ charge (product of Na+ charge per 
spike and firing rate) in response to a given signal as a function of temperature.
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be crucial in promoting the development of complex neuronal circuit 
and multiple-layer structures of a large brain for high level cognitive 
functions.

Methods
Data analysis and statistics

The precision of the spike timing of neural response was evaluated 
by calculating the jitter in the timing of individual spikes produced 
by HH neuronal model in response to multiple presentations of the 
same aperiodic signal. In each trial, the neuron was stimulated with 
a signal that was repeated for at least 100 trials. For each trial, the 
temperature is fixed while changed across the trials with a variance 
described by standard deviation σT. The 100 trials of the spiking 
response were used to construct a peristimulus time histogram 
(PSTH) of the afferent spike trains. The PSTH was used to examine 
spike events that carry information about stimulus features in the 
signal. In other words, events corresponded to vertical columns of 
spikes in the spike time raster plots (see Figure 1C and D). For each 
of these events, the times of the associated spikes referenced to the 
start of a trial were extracted from the raw data file. The standard 
deviation (SD) of the individual spike times at each event was defined 
as the jitter of the event. The overall spike timing jittering for each 
PSTH was calculated as an averaged jitter over all the events. For each 
event, we defined its reliability as the fraction of the trials in which 
a spike was elicited. Hence, a small value of this fraction close to 0 
suggests a low reliability while a high value close to 1 suggests a highly 
repeatable neural response.

Hodgkin-Huxley-Style Cortical Neuronal Model
To have a comparison with the results from the original HH 

model, and also to address the key factors contributing to energy 
efficient action potentials, only three major ionic voltage-dependent 
currents have been used in our cortical model: fast Na+, INa, fast K+, 
IK, and a leak current, IL. The equations describing the voltage and 
time dependence of the Na+ and K+ conductance’s were based upon 
previous publications [15], whose channel kinetics are modified 
based on models of cortical neurons [4,16,17] and experimental 
studies [4,18-20]. The equations describing the cortical axon single 
compartment model:

Where the Q10 effect, described by Φ regulating the temperature 
dependence of rate of biochemical reactions with Q10 =2.3 [21,22]. 
The relationship between temperature and INa and IK activation and 
inactivation is not monotonic and varies in different species [23]. The 
reversal potential for Na+ and K+ currents was adjusted according 
to the Nernst equation with each change in temperature. Similar 
results were obtained with a variety of values for Q10. Using a Q10 of 
3, for example, yielded similar results in spike efficiency and changes 
in spike rate with temperature. In our cortical model, we slightly 
adjusted Na+ kinetics to be faster than what we have used previously 
[4], owing to recent experimental observations by Schmidt-Hieber 
and Bischofberger [19]. The parameters used in our present cortical 
neuronal model are: membrane capacitance = 0.75 μF /cm2, gNa = 
1500 pS/μm2 (based on recent experimental results [18,19,24-26], 
density of gK = 40 pS/μm2 [20] and gleak = 0.33 pS/μm2. The reversal 
potentials are VL=-70 mV, VNa=60 mV, and VK =-90 mV for leak, 
sodium and potassium channels, respectively. The injected DC value 
is 0.5 x10-2 pA/µm2 for Figure 1 and 2, respectively.
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