
Citation: Hanif MK and Zimmermann KH. Graphics Card Processing: Acceleration of Multiple Sequence
Alignment. Austin J Comput Biol Bioinform. 2014;1(2): 6.

Austin J Comput Biol Bioinform - Volume 1 Issue 2 - 2014
ISSN : 2379-7967 | www.austinpublishinggroup.com
Hanif et al. © All rights are reserved

Austin Journal of Computational Biology
and Bioinformatics

Open Access

Abstract

ClustalW is the most widely used heuristic method for multiple sequence
alignment. It consists of three stages: distance matrix calculation, guide tree
compilation, and greedy-fashion alignment. The high computational complexity
demands methods to accelerate the algorithm. In this work, the efficient
mapping of the progressive alignment stage onto graphics processing unit by
using a combination of wavefront and matrix-matrix product techniques will be
studied. The experimental results exhibit one order of magnitude speed-up over
the serial version.

Keywords: Alignment; Progressive alignment; Graphics processor card;
ClustalW; Performance

alignment [5,6]. This method aligns more closely related sequences
first and then gradually adds more divergent sequences [7]. The
alignment accuracy can be improved by assessing the sequences
according to their relatedness. A progressive alignment algorithm
can handle a larger number of sequences in practical time scales. The
most widely used progressive alignment programs are ClustalW [5,8,
9], T-Coffee [6,10], MAFFT [11,12], and MUSCLE [13,14].

ClustalW is a typical progressive alignment algorithm making use
of the policy ”once a gap, always a gap”, i.e., gaps introduced earlier
in the alignment remain valid as new sequences are added [9,15].
It works in three stages (Figure 1). In the first stage, the distances
between all pairs of sequences are calculated by pairwise sequence
alignment. Pairwise sequence alignment can be calculated by the
dynamic programming based method of Needleman-Wunsch [16]
or one of its varieties like Smith-Waterman [17] or a fast heuristic
method [9,18-20]. The scores of attained pairwise alignments are
converted into distances which are input for the subsequent stage [9].

In the second stage, the distance matrix calculated in the first
stage is used to build the guide tree which serves as a guide for the
calculation of the overall multiple sequence alignment. This tree can
be constructed by a heuristic phylogenetic method, like neighbour
joining [21] or Unweighted Pair Group Method with Arithmetic
mean (UPGMA) [22].

In the final stage, the sequences are progressively aligned using
the guide tree. For this, the sequences correspond one-to-one with
the leaves of the tree. Three cases can occur:

•	 An inner node (cherry) whose descendants are leaves is
associated with the pairwise alignment of the sequences corresponding
to these leaves.

•	 An inner node whose descendants are a leaf and an inner
node is associated to the alignment given by the sequence and the
multiple alignments. This can be achieved by profile-sequence
alignment where the given multiple alignment is represented by a
statistical representative called profile.

Introduction
Sequence alignment is the fundamental technique in molecular

biology to compare sequences and to identify regions of similarity that
are eventually consequences of structural, functional, or evolutionary
relationships [1-4]. Sequence alignment is performed for all kinds of
organic molecules, like DNA, RNA, or protein sequences. Multiple
sequence alignment is the technique to align three or more sequences
simultaneously. The aligned sequences are obtained by inserting gaps
and have equal length. However, multiple sequence alignment is
very time-consuming. For instance, optimal dynamic programming
methods require O(2knk) steps to simultaneously align k sequences of
length O(n) [4].

A variety of heuristic methods have been developed to cope with
multiple sequence alignment problems. The most widely accepted
heuristic method for aligning multiple sequences is progressive

Research Article

Graphics Card Processing: Acceleration of Multiple
Sequence Alignment
Hanif MK* and Zimmermann KH
Institute of Computer Technology, Hamburg University
of Technology, Germany

*Corresponding author: Muhammad Kashif Hanif,
Institute of Computer Technology, Hamburg University
of Technology, 21071 Hamburg, Germany, Email:
muhammad.hanif@tuhh.de

Received: September 16, 2014; Accepted: December
01, 2014; Published: December 05, 2014

Figure 1: Stages of the ClustalW algorithm. The first stage computes the
pairwise distances between the sequences. The guide tree is built in stage
two using the distances. In stage three, the sequences are progressively
aligned.

Austin J Comput Biol Bioinform 1(2): id1008 (2014) - Page - 02

Hanif MK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

•	 An inner node whose descendants are two inner nodes is
associated to the alignment given by the corresponding multiple
alignments. This can be attained by profile-profile alignment
where the given multiple alignments are represented by statistical
representatives.

The root of the tree corresponds to the overall multiple sequence
alignment. The basic algorithm uses one weight matrix and fixed gap
opening and extension penalties.

This approach, however, is not suitable for more divergent
sequences. In this case, sequence weights are calculated from the guide
tree. Closely related sequences have lower weights while the divergent
ones have higher weights. Moreover, different substitution matrices
are used at different alignment stages. New penalties are calculated
based on the length and similarity of sequences, weight matrix, and
gap positions [4,9]. An example using the tat and vpu proteins from
HIV 1 (Human Immunodeficiency Virus) is shown in Figure 2. The
complexity of the ClustalW algorithm is shown in Table 1 where n is
the number of sequences and l is the average sequence length [20].

Many efforts have been made to accelerate the performance of
the ClustalW algorithm. ClustalW-MPI [23], Ebedes et al. [24],
and pCLUSTAL [25] use MPI to parallelize ClustalW on a cluster.
ClustalW-MPI parallelized all three stages and achieved approximately
4.3 speed-up using 16 processors. Ebedes et al. demonstrated a speed-
up of 5.5 by parallelizing the stages one and three. Similarly, Tan et al.
[26] use MPI/Open MP for symmetric multiprocessors to parallelize
the stages one and three. Mikhailov et al. [27] show a 10-fold speed-
up by parallelizing all three stages with OpenMP on a shared-memory
SGI machine. Aung et al. [28] employed a Field-Programmable Gate
Array (FPGA) for acceleration of stage one. Oliver et al. [29] mapped
stage one on FPGA and attained a speed-up between 45 and 50. MT-
ClustalW [30] utilized pthreads to parallelize all three stages. GPU-
ClustalW [31] parallelized the first stage on a GPU with OpenGL to
obtain approximately 7 speed-up. MSA-CUDA [19] exploited the

parallel architecture of the GPU by implementing all three stages
and achieved a maximum average speed-up of approximately 37 for
a small number of long sequences. Bassoy et al. [32] formulated a
matrix-matrix product algorithm by separating the profile-sequence
alignment algorithm into a data dependent and a data independent
part to attain an order of magnitude speed-up on a GPU. However,
they have ignored the time taken by executing the data dependent
part on the CPU which is the reason for their huge speed-up given.
Recently, Hanif and Zimmermann [33] described parallel algorithms
for profile-profile alignment using matrix-matrix product and the
wavefront approach attaining a 20-fold average speed-up for the
wavefront approach. The results have shown that the matrix-matrix
product and the wavefront methods are the most promising for profile-
sequence alignment and profile-profile alignment, respectively.

A Graphics Processing Unit (GPU) is a highly parallel many-
core streaming architecture which can execute hundreds of threads
in a concurrent manner. The data parallel architecture of a GPU is
particularly suitable to perform computation intensive tasks. GPUs
offer orders of magnitude more computation power than CPUs and are
becoming increasingly popular for general purpose computations to
attain high speed-ups. A large set of problems in molecular dynamics,
physics simulations, and scientific computing [34] have been tackled
by mapping them onto a GPU. NVIDIA has introduced a GPU
programming model called Compute Unified Device Architecture
(CUDA) which enables the programmer to write C-like functions
called kernels with some extensions that leverages programmers to
efficiently use the graphics API. Each kernel is executed by a batch of
parallel threads. CUDA provides three key abstractions: a hierarchy
of thread groups, shared memories, and barrier synchronization [34].

In this paper, a combination of matrix-matrix product and
wavefront methods will be used to parallelize the progressive
alignment stage of ClustalW. The paper is organized as follows:
Section 2 provides a method to accelerate the progressive alignment
stage of ClustalW and section 3 evaluates its performance and
compares it to the CPU implementation.

Materials and Methods
The performance of the ClustalW algorithm can be improved

using the parallel architecture of the GPU. This particularly holds for
the third stage, the alignment of the sequences using a guide tree.

First, a matrix-matrix product based approach to profile-sequence
alignment will be introduced [35]. The technique of Bassoy et al. [32]
is similar, but required additional memory and clock cycles.

Given a multiple alignment of length m by its profile P on the
alphabet Σ’ = Σ’ U {−} and a sequence x of length n, the score between
a column p of the profile and a character a∈ Σ’ is [4]

 (1)

Profile-sequence alignment algorithm can be converted into
a matrix-matrix product by separating the data dependent and
independent parts. First, the data independent part calculates three
scalar products. The diagonal entries of the forward table are stored
in m × n matrix D. Two vectors hand vof lengths m and n are used to
store the vertical and horizontal entries of the forward table. Second,

Figure 2: ClustalW based sequence alignment between the tat and
vpu proteins from HIV 1 calculated from EMBL-EBI using the BLOSUM
substitution matrix. The gap opening and the gap extension penalties for
pairwise alignments are 10 and 0.1, respectively, and the initial gap penalty
and the gap extension penalty for multiple alignments are 25 and 0.2,
respectively.

Stage O(Time)

Distance matrix O(n 2 l 2)

Guide tree O(n 3)

Progressive alignment O(nl 2 + n 2 l)

Total O(n 2l 2 + n 3)

Table 1: Complexity of the ClustalW algorithm by stage [20].
() (), , . .b

b
p a a b pσ σ

′∈Σ

=∑

Austin J Comput Biol Bioinform 1(2): id1008 (2014) - Page - 03

Hanif MK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

these values are used in the data dependent part for calculation of the
forward table entries.

The profile column –p= (0,…,0,1)T represents a column consisting
of blanks having relative frequency of blank 1. Take the extended
alphabet Σ' = {a1,…,al}, where al equals blank, and assign

 wa=(σ(a,a1),…,σ(a,al))T, a∈Σ'. (2)

The vectors h and v can be computed as

 () (), , ,
j

T
j p j j p p x

b
h x x b wσ σ= − = ⋅− = − ⋅∑ (3)

() () ,, , .T
i i i b i

b
v p b p p wσ σ −= − = − ⋅ = ⋅∑ (4)

The matrix D of size m × n is calculated as

() (), ,, , ,

j

T
i j i j j i b i x

b
D p x x b p p wσ σ= = ⋅ = ⋅∑ (5)

The calculations of h, v, and D can be written into a matrix-vector
product. For this, take the l × n matrix W

The values of the vectors h and v and the matrix D are determined
as

 (6)

 (7)

 (8)

To calculate first column of the forward table, take the lower
triangular m × m matrix Bm

 (9)

Similarly, the first row is calculated by having the n × n upper
triangular matrix Bn

 (10)

This gives the algorithm PROSEQALIGNMATVECPRODV2.

Algorithm 1: PROSEQALIGNMATVECPRODV2(x,P).

Require: sequence x = x1 . . . xn and profile P = p1 . . . pm

1: S0,0 ← 0 {initialization}

2: v ← PT · w−

3:

4: S*,0 ← Bmv

5: S0,* ← hBn

6: for i ← 1 to m do {calculation}

7: Di ← pT
i ·W

8: end for

9: for i ← 1 to m do {maximization}

10: for j ← 1 to n do

11: Si,j←max{Si-1,j+vi,Si,j-1+hj,Si-1,j-1+Dij}

12: end for

13: end for

14: return S

The matrix D can be computed by matrix multiplication as

D = PT. W. (11)

This resultant algorithm is PROSEQALIGNMATPRODV2.

Five versions of profile-sequence alignment algorithm on GPU
have been considered.

Algorithm 2: PROSEQALIGNMATPRODV2(x,P).

Require: sequence x = x1 . . . xn and profile P = p1 . . . pm

1. S0,0 ← 0 {initialization}

2. v← PT .w-

3. h ← −T
P ·w

4. S*,0 ← Bmv

5. S0,* ←hBn

6. D ← PT.W

7. for i ← 1 to m do {maximization}

8. for j ← 1 to n do

9. Si,j←max{Si-1,j+vi,Si,j-1+hj,Si-1,j-1+Dij}

10. end for

11. end for

12. return S

•	 MatVecProd V1: Matrix-vector product implementation
using cublasSgemv [32].

•	 MatVecProd V2: Matrix-vector product implementation
using cublasSgemv.

()1 2

111
1 1

...

1
n

T
n p x x xh B w w w

 ⋅⋅⋅

⋅⋅⋅ ⋅ = − ⋅ ⋅⋅ ⋅ ⋅ ⋅⋅

()1 1
.

n

T T T
p x p x p xw w w= − ⋅ ⋅⋅⋅ − ⋅ + ⋅⋅⋅ + − ⋅

()1
,..., .

nx xW w w=

,Tv P w−= ⋅

,T
ph W= − ⋅

,T
i iD p W= ⋅

1

1
1 1

1 1 1

T

m
T
m

p
B v w

p
−

 ⋅ ⋅⋅ = ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅⋅

1

1 2

1 2

.
...

...

T

T T

T T T
m

p w
p w p w

p w p w p w

−

− −

− − −

 ⋅

⋅ + ⋅ =
 ⋅ + ⋅ + + ⋅

T
ph W←− ⋅

Austin J Comput Biol Bioinform 1(2): id1008 (2014) - Page - 04

Hanif MK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

•	 MatProd V1: Matrix-vector product implementation using
cublasSgemm [32].

•	 MatProd V2: Matrix-vector product implementation using
cublasSgemm.

•	 SMWavefront 256: Wavefront approach using shared
memory having block size 256 [35].

For MatVecProd V1 and MatProd V1, results are taken up
to sequence length 6,000. A sequence length of 10,000 requires
approximately 1145 MB to store matrices which is well beyond the
capacity of available global memory (1024 MB). A maximum speed-
up factor of approximately 28 is attained when compared with
optimized Intel CPU implementation (Figure 3). Parallel versions
of profile-profile alignment are given in [33]. The results show that
a mixture of wavefront and matrix-matrix product methods can be
useful for the parallelization of the progressive alignment stage.

The approach adopted is similar to that in [19]. First, the
intermediate nodes of the guide tree are labeled by post-order
traversal. Two vectors are used to maintain the right child and left
child of the nodes. One flag vector is required to keep track whether
the node has been aligned. The flag for the leaf nodes is set to 1 when
the alignment is not required. The left and right children indices are
0 for the leaf nodes.

The flag vector is checked to identify the nodes of the guide tree
to be aligned. An alignment at an intermediate node can only be
performed if the right and left children have been aligned. In first

phase, the leaf nodes are aligned using pairwise sequence alignment
since the left and right children are assumed to be aligned as indicated
in the flag vector. In next phase, the flag vector is again checked to
find potential candidates for subsequent alignment. This process
continues until the overall multiple sequence alignment is obtained
and the flag vector contains 1 for each node.

The frequency based profiles are constructed for the intermediate
nodes. A profile and a sequence are aligned by the matrix-matrix
product while two profiles are aligned using the wavefront method
on the GPU. The traceback is performed on the CPU to find the
alignment by adding gaps in the aligned sequences.

Results and Discussion
The ClustalW progressive alignment stage has been implemented

on an Intel Core 2 Duo 6600 CPU (2.40 GHz) running openSUSE 11.4
linux distribution and CUDA version 4.0 on an NVIDIA GeForce
GTX 560 Ti graphics card. The tests have been conducted using a
serial gcc compiler (version 4.4.1) and an NVIDIA nvcc compiler.
The performance of the parallel progressive alignment stage has been
measured by the speed-up. The dataset for the implementation of the
ClustalW algorithm is similar to that in [19]. The protein sequence
dataset consists of the HIV dataset available at the NCBI database.
The dataset has been divided into several subsets:

•	 400 sequences of average length 856 and 1000 sequences of
average length 858;

•	 2000 sequences of average length 266 and 4000 sequences
of average length 247;

•	 4000 sequences of average length 57 and 8000 sequences of
average length 73.

The execution times have been averaged over ten runs for each
data subset. The times for memory allocation and data transfer to
or from the GPU have been neglected. The input to the progressive
alignment stage is a guide tree which has been generated by the
ClustalW program from the EMBL-EBI website.

The speed-up for the progressive alignment stage is illustrated in
Figure 4. Note that profile creation and traceback have been performed
on the CPU and have not been neglected. The data subsets given by
longer sequences have achieved a speed-up of one order of magnitude

Figure 3: Speed-ups of profile-sequence alignment algorithms. Figure 4: Speed-up for progressive alignment stage of the ClustalW.

Austin J Comput Biol Bioinform 1(2): id1008 (2014) - Page - 05

Hanif MK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

since the matrices to be multiplied utilize the hardware resources
rather efficiently. The data subsets given by shorter sequences show a
similar behavior due to the possibility to process multiple sequences
in each pass. The computation-to-communication ratio of wavefront
approach for sequences and profiles [33] of average length is low
which impacts the speed-up exhibited by the data subsets of average
length sequences. The maximum speed-up attained is much better
than the speed-up of approximately 6 exhibited by progressive
alignment stage of MSA-CUDA [19].

Conclusion
This paper has provided a parallel algorithm for the progressive

alignment stage of the ClustalW algorithm onto the GPU using a
mixture of algorithms: matrix-matrix product for profile-sequence
alignment and wavefront for profile-profile alignment. The results
have shown a performance increase of more than one order of
magnitude for several data sets considered.

Acknowledgement
The authors would like to thank Yongchao Liu for providing the

dataset. The work of the first author has been sponsored by DAAD
and Higher Education Commission of Pakistan.

References
1. Durbin R, Eddy SR, Krogh A, Mitchison GJ. Biological sequence analysis:

probabilistic models of proteins and nucleic acids. Cambridge University
Press. 1998.

2. Gusfield D. Algorithms on strings, trees, and sequences: computer science
and computational biology. New York: Cambridge University Press. 1997.

3. Waterman MS. Introduction to computational biology: maps, sequences, and
genomes: interdisciplinary statistics. CRC Press. 1995.

4. Zimmermann KH. An introduction to protein informatics. Boston: Kluwer
Academic Publishers. 2003.

5. Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer. Gene. 1988; 73: 237-244.

6. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology. 2000;
302: 205–217.

7. Feng DF, Doolittle RF. Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. J Mol Evol. 1987; 25: 351-360.

8. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al.
Multiple sequence alignment with the Clustal series of programs. Nucleic
Acids Res. 2003; 31: 3497-3500.

9. Thompson J, Higgins D, Gibson T. CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids
Research. 1994; 22: 4673–4680.

10. Magis C, Taly JF, Bussotti G, Chang JM, Di Tommaso P, Erb I, et al. T-Coffee:
tree-based consistency objective function for alignment evaluation. Methods
in Molecular Biology. 2014; 1079: 117–129.

11. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Res. 2002; 30: 3059-3066.

12. Katoh K, Standley DM. MAFFT multiple sequence alignment software version
7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772-
780.

13. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 2004; 32: 1792-1797.

14. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced
time and space complexity. BMC Bioinformatics. 2004; 5: 113.

15. Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple
sequence alignments. Methods Enzymol. 1996; 266: 383-402.

16. Needleman SB, Wunsch CD. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol. 1970; 48:
443-453.

17. Smith TF, Waterman MS. Identification of common molecular subsequences.
J Mol Biol. 1981; 147: 195-197.

18. Bashford D, Chothia C, Lesk AM. Determinants of a protein fold. Unique
features of the globin amino acid sequences. J Mol Biol. 1987; 196: 199-216.

19. Liu Y, Schmidt B, Maskell DL. MSA-CUDA: Multiple sequence alignment on
graphics processing units with CUDA. Proceedings of 20th IEEE International
Conference on Application-Specific Systems, Architectures and Processors,
ASAP 2009. Boston, MA, USA. IEEE. 2009; 121–128.

20. Liu Y, Schmidt B, Maskell DL. Parallel reconstruction of neighbor-joining
trees for large multiple sequence alignments using CUDA. Proceedings of
23rd IEEE International Sym-posium on Parallel and Distributed Processing,
IPDPS 2009. Rome, Italy. Washington: IEEE Computer Society. 2009; 1–8.

21. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4: 406-425.

22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam
H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23: 2947-
2948.

23. Li KB. ClustalW-MPI: ClustalW analysis using distributed and parallel
computing. Bioinformatics. 2003; 19: 1585-1586.

24. Ebedes J, Datta A. Multiple sequence alignment in parallel on a workstation
cluster. Bioinformatics. 2004; 20: 1193-1195.

25. Cheetham J, Dehne F, Pitre S, Rau-Chaplin A, Taillon PJ. Parallel Clustal
W for PC clusters. Proceedings of the International Conference on
Computational Science and Its Applications: Part II, ICCSA 2003. Montreal,
Canada. Lecture Notes in Computer Science. Berlin: Springer. 2003; 2668:
300–309.

26. Tan G, Feng S, Sun N. Parallel Multiple Sequences Alignment in SMP
Cluster. Proceedings of the Eighth International Conference on High-
Performance Computing in Asia-Pacific Region, HPCASIA’05; 2005. Beijing,
China. Washington: IEEE Computer Society. 2005; 425–431.

27. Mikhailov D, Cofer H, Gomperts R. Performance Optimization of Clustal W:
Parallel Clustal W, HT Clustal, and MULTICLUSTAL. SGI ChemBio. 2001.

28. Aung YL, Maskell DL, Oliver TF, Schmidt B, Bong W. C-based design
methodology for FPGA implementation of ClustalW MSA. Proceedings of the
2nd IAPR International Conference on Pattern Recognition in Bioinformatics;
2007. Lecture Notes in Computer Science. Berlin: Springer. 2007; 4774:
11–18.

29. Oliver T1, Schmidt B, Nathan D, Clemens R, Maskell D. Using reconfigurable
hardware to accelerate multiple sequence alignment with ClustalW.
Bioinformatics. 2005; 21: 3431-3432.

30. Chaichoompu K, Kittitornkun S, Tongsima S. MT-ClustalW: multithreading
multiple sequence alignment. Proceedings of the 20th International
Conference on Parallel and Distributed Processing, IPDPS’06; 2006. Rhodes
Isl and, Greece. Washington: IEEE Computer Society. 2006; 254–254.

31. Liu W, Schmidt B, Voss G, Muller-Wittig W. GPU-ClustalW: using graphics
hardware to accelerate multiple sequence alignment. Proceedings of the 13th
International Conference on High Performance Computing, HiPC’06; 2006.
Bangalore, India. Lecture Notes in Computer Science. Berlin: Springer. 2006;
4297: 363–374.

32. Bassoy CS, Torgasin S, Yang M, Zimmermann KH. Accelerating Scalar-
Product Based Sequence Alignment using Graphics Processor Units. Signal
Processing Systems. 2010; 61: 117–125.

33. Hanif MK, Zimmermann KH. Graphics card processing: accelerating profile-
profile alignment. Central European Journal of Computer Science. 2012; 2:
367–388.

http://www.cambridge.org/us/academic/subjects/life-sciences/genomics-bioinformatics-and-systems-biology/biological-sequence-analysis-probabilistic-models-proteins-and-nucleic-acids
http://www.cambridge.org/us/academic/subjects/life-sciences/genomics-bioinformatics-and-systems-biology/biological-sequence-analysis-probabilistic-models-proteins-and-nucleic-acids
http://www.cambridge.org/us/academic/subjects/life-sciences/genomics-bioinformatics-and-systems-biology/biological-sequence-analysis-probabilistic-models-proteins-and-nucleic-acids
http://www.cambridge.org/us/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/algorithms-strings-trees-and-sequences-computer-science-and-computational-biology
http://www.cambridge.org/us/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/algorithms-strings-trees-and-sequences-computer-science-and-computational-biology
http://dodenazeqizy.jimdo.com/2014/11/04/introduction-to-computational-biology-maps-sequences-and-genomes-chapman-hall-crc-interdisciplinary-statistics-book-download/
http://dodenazeqizy.jimdo.com/2014/11/04/introduction-to-computational-biology-maps-sequences-and-genomes-chapman-hall-crc-interdisciplinary-statistics-book-download/
http://www.springer.com/computer/theoretical+computer+science/book/978-1-4020-7578-0
http://www.springer.com/computer/theoretical+computer+science/book/978-1-4020-7578-0
http://www.ncbi.nlm.nih.gov/pubmed/3243435
http://www.ncbi.nlm.nih.gov/pubmed/3243435
http://www.tcoffee.org/Projects/tcoffee/papers/tcoffee.pdf
http://www.tcoffee.org/Projects/tcoffee/papers/tcoffee.pdf
http://www.tcoffee.org/Projects/tcoffee/papers/tcoffee.pdf
http://www.ncbi.nlm.nih.gov/pubmed/3118049
http://www.ncbi.nlm.nih.gov/pubmed/3118049
http://www.ncbi.nlm.nih.gov/pubmed/12824352
http://www.ncbi.nlm.nih.gov/pubmed/12824352
http://www.ncbi.nlm.nih.gov/pubmed/12824352
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308517/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308517/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308517/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308517/
http://www.ncbi.nlm.nih.gov/pubmed/24170398
http://www.ncbi.nlm.nih.gov/pubmed/24170398
http://www.ncbi.nlm.nih.gov/pubmed/24170398
http://www.ncbi.nlm.nih.gov/pubmed/12136088
http://www.ncbi.nlm.nih.gov/pubmed/12136088
http://www.ncbi.nlm.nih.gov/pubmed/12136088
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://www.ncbi.nlm.nih.gov/pubmed/15034147
http://www.ncbi.nlm.nih.gov/pubmed/15318951
http://www.ncbi.nlm.nih.gov/pubmed/15318951
http://www.ncbi.nlm.nih.gov/pubmed/8743695
http://www.ncbi.nlm.nih.gov/pubmed/8743695
http://www.ncbi.nlm.nih.gov/pubmed/5420325
http://www.ncbi.nlm.nih.gov/pubmed/5420325
http://www.ncbi.nlm.nih.gov/pubmed/5420325
http://www.ncbi.nlm.nih.gov/pubmed/7265238
http://www.ncbi.nlm.nih.gov/pubmed/7265238
http://www.ncbi.nlm.nih.gov/pubmed/3656444
http://www.ncbi.nlm.nih.gov/pubmed/3656444
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5200019&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5200019
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5200019&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5200019
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5200019&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5200019
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5200019&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5200019
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5160923&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5160923
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5160923&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5160923
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5160923&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5160923
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5160923&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5160923
http://www.ncbi.nlm.nih.gov/pubmed/3447015
http://www.ncbi.nlm.nih.gov/pubmed/3447015
http://www.ncbi.nlm.nih.gov/pubmed/17846036
http://www.ncbi.nlm.nih.gov/pubmed/17846036
http://www.ncbi.nlm.nih.gov/pubmed/17846036
http://www.ncbi.nlm.nih.gov/pubmed/12912844
http://www.ncbi.nlm.nih.gov/pubmed/12912844
http://www.ncbi.nlm.nih.gov/pubmed/14764554
http://www.ncbi.nlm.nih.gov/pubmed/14764554
http://link.springer.com/chapter/10.1007%2F3-540-44843-8_32
http://link.springer.com/chapter/10.1007%2F3-540-44843-8_32
http://link.springer.com/chapter/10.1007%2F3-540-44843-8_32
http://link.springer.com/chapter/10.1007%2F3-540-44843-8_32
http://link.springer.com/chapter/10.1007%2F3-540-44843-8_32
http://www.computer.org/csdl/proceedings/hpcasia/2005/2486/00/24860426-abs.html
http://www.computer.org/csdl/proceedings/hpcasia/2005/2486/00/24860426-abs.html
http://www.computer.org/csdl/proceedings/hpcasia/2005/2486/00/24860426-abs.html
http://www.computer.org/csdl/proceedings/hpcasia/2005/2486/00/24860426-abs.html
http://www.cs.gsu.edu/~cscbecx/Bioinfor FIle/5.pdf
http://www.cs.gsu.edu/~cscbecx/Bioinfor FIle/5.pdf
http://link.springer.com/chapter/10.1007%2F978-3-540-75286-8_2
http://link.springer.com/chapter/10.1007%2F978-3-540-75286-8_2
http://link.springer.com/chapter/10.1007%2F978-3-540-75286-8_2
http://link.springer.com/chapter/10.1007%2F978-3-540-75286-8_2
http://link.springer.com/chapter/10.1007%2F978-3-540-75286-8_2
http://www.ncbi.nlm.nih.gov/pubmed/15919726
http://www.ncbi.nlm.nih.gov/pubmed/15919726
http://www.ncbi.nlm.nih.gov/pubmed/15919726
http://www.hicomb.org/papers/HICOMB2006-07.pdf
http://www.hicomb.org/papers/HICOMB2006-07.pdf
http://www.hicomb.org/papers/HICOMB2006-07.pdf
http://www.hicomb.org/papers/HICOMB2006-07.pdf
http://link.springer.com/chapter/10.1007%2F11945918_37
http://link.springer.com/chapter/10.1007%2F11945918_37
http://link.springer.com/chapter/10.1007%2F11945918_37
http://link.springer.com/chapter/10.1007%2F11945918_37
http://link.springer.com/chapter/10.1007%2F11945918_37
http://link.springer.com/article/10.1007%2Fs11265-009-0409-5
http://link.springer.com/article/10.1007%2Fs11265-009-0409-5
http://link.springer.com/article/10.1007%2Fs11265-009-0409-5
http://link.springer.com/article/10.2478%2Fs13537-012-0033-5
http://link.springer.com/article/10.2478%2Fs13537-012-0033-5
http://link.springer.com/article/10.2478%2Fs13537-012-0033-5

Austin J Comput Biol Bioinform 1(2): id1008 (2014) - Page - 06

Hanif MK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

34. NVIDIA Corporation. NVIDIA Corporation, editor. CUDA C Programming
Guide Version 4.0. NVIDIA Corporation. 2011.

35. Hanif MK. Mapping dynamic programming algorithms on graphics processing
units. PhD Thesis, Hamburg University of Technology. 2014.

Citation: Hanif MK and Zimmermann KH. Graphics Card Processing: Acceleration of Multiple Sequence
Alignment. Austin J Comput Biol Bioinform. 2014;1(2): 6.

Austin J Comput Biol Bioinform - Volume 1 Issue 2 - 2014
ISSN : 2379-7967 | www.austinpublishinggroup.com
Hanif et al. © All rights are reserved

http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
http://d-nb.info/1059158418/34
http://d-nb.info/1059158418/34

	Title
	Abstract
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion
	Acknowledgement
	References
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4

