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Abstract

ClustalW is the most widely used heuristic method for multiple sequence 
alignment. It consists of three stages: distance matrix calculation, guide tree 
compilation, and greedy-fashion alignment. The high computational complexity 
demands methods to accelerate the algorithm. In this work, the efficient 
mapping of the progressive alignment stage onto graphics processing unit by 
using a combination of wavefront and matrix-matrix product techniques will be 
studied. The experimental results exhibit one order of magnitude speed-up over 
the serial version.
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alignment [5,6]. This method aligns more closely related sequences 
first and then gradually adds more divergent sequences [7]. The 
alignment accuracy can be improved by assessing the sequences 
according to their relatedness. A progressive alignment algorithm 
can handle a larger number of sequences in practical time scales. The 
most widely used progressive alignment programs are ClustalW [5,8, 
9], T-Coffee [6,10], MAFFT [11,12], and MUSCLE [13,14].

ClustalW is a typical progressive alignment algorithm making use 
of the policy ”once a gap, always a gap”, i.e., gaps introduced earlier 
in the alignment remain valid as new sequences are added [9,15]. 
It works in three stages (Figure 1). In the first stage, the distances 
between all pairs of sequences are calculated by pairwise sequence 
alignment. Pairwise sequence alignment can be calculated by the 
dynamic programming based method of Needleman-Wunsch [16] 
or one of its varieties like Smith-Waterman [17] or a fast heuristic 
method [9,18-20]. The scores of attained pairwise alignments are 
converted into distances which are input for the subsequent stage [9].

In the second stage, the distance matrix calculated in the first 
stage is used to build the guide tree which serves as a guide for the 
calculation of the overall multiple sequence alignment. This tree can 
be constructed by a heuristic phylogenetic method, like neighbour 
joining [21] or Unweighted Pair Group Method with Arithmetic 
mean (UPGMA) [22].

In the final stage, the sequences are progressively aligned using 
the guide tree. For this, the sequences correspond one-to-one with 
the leaves of the tree. Three cases can occur:

•	 An inner node (cherry) whose descendants are leaves is 
associated with the pairwise alignment of the sequences corresponding 
to these leaves.

•	 An inner node whose descendants are a leaf and an inner 
node is associated to the alignment given by the sequence and the 
multiple alignments. This can be achieved by profile-sequence 
alignment where the given multiple alignment is represented by a 
statistical representative called profile.

Introduction
Sequence alignment is the fundamental technique in molecular 

biology to compare sequences and to identify regions of similarity that 
are eventually consequences of structural, functional, or evolutionary 
relationships [1-4]. Sequence alignment is performed for all kinds of 
organic molecules, like DNA, RNA, or protein sequences. Multiple 
sequence alignment is the technique to align three or more sequences 
simultaneously. The aligned sequences are obtained by inserting gaps 
and have equal length. However, multiple sequence alignment is 
very time-consuming. For instance, optimal dynamic programming 
methods require O(2knk) steps to simultaneously align k sequences of 
length O(n) [4].

A variety of heuristic methods have been developed to cope with 
multiple sequence alignment problems. The most widely accepted 
heuristic method for aligning multiple sequences is progressive 
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Figure 1: Stages of the ClustalW algorithm. The first stage computes the 
pairwise distances between the sequences. The guide tree is built in stage 
two using the distances. In stage three, the sequences are progressively 
aligned.
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•	 An inner node whose descendants are two inner nodes is 
associated to the alignment given by the corresponding multiple 
alignments. This can be attained by profile-profile alignment 
where the given multiple alignments are represented by statistical 
representatives.

The root of the tree corresponds to the overall multiple sequence 
alignment. The basic algorithm uses one weight matrix and fixed gap 
opening and extension penalties.

This approach, however, is not suitable for more divergent 
sequences. In this case, sequence weights are calculated from the guide 
tree. Closely related sequences have lower weights while the divergent 
ones have higher weights. Moreover, different substitution matrices 
are used at different alignment stages. New penalties are calculated 
based on the length and similarity of sequences, weight matrix, and 
gap positions [4,9]. An example using the tat and vpu proteins from 
HIV 1 (Human Immunodeficiency Virus) is shown in Figure 2. The 
complexity of the ClustalW algorithm is shown in Table 1 where n is 
the number of sequences and l is the average sequence length [20].

Many efforts have been made to accelerate the performance of 
the ClustalW algorithm. ClustalW-MPI [23], Ebedes et al. [24], 
and pCLUSTAL [25] use MPI to parallelize ClustalW on a cluster. 
ClustalW-MPI parallelized all three stages and achieved approximately 
4.3 speed-up using 16 processors. Ebedes et al. demonstrated a speed-
up of 5.5 by parallelizing the stages one and three. Similarly, Tan et al. 
[26] use MPI/Open MP for symmetric multiprocessors to parallelize 
the stages one and three. Mikhailov et al. [27] show a 10-fold speed-
up by parallelizing all three stages with OpenMP on a shared-memory 
SGI machine. Aung et al. [28] employed a Field-Programmable Gate 
Array (FPGA) for acceleration of stage one. Oliver et al. [29] mapped 
stage one on FPGA and attained a speed-up between 45 and 50. MT-
ClustalW [30] utilized pthreads to parallelize all three stages. GPU-
ClustalW [31] parallelized the first stage on a GPU with OpenGL to 
obtain approximately 7 speed-up. MSA-CUDA [19] exploited the 

parallel architecture of the GPU by implementing all three stages 
and achieved a maximum average speed-up of approximately 37 for 
a small number of long sequences. Bassoy et al. [32] formulated a 
matrix-matrix product algorithm by separating the profile-sequence 
alignment algorithm into a data dependent and a data independent 
part to attain an order of magnitude speed-up on a GPU. However, 
they have ignored the time taken by executing the data dependent 
part on the CPU which is the reason for their huge speed-up given. 
Recently, Hanif and Zimmermann [33] described parallel algorithms 
for profile-profile alignment using matrix-matrix product and the 
wavefront approach attaining a 20-fold average speed-up for the 
wavefront approach. The results have shown that the matrix-matrix 
product and the wavefront methods are the most promising for profile-
sequence alignment and profile-profile alignment, respectively.

A Graphics Processing Unit (GPU) is a highly parallel many-
core streaming architecture which can execute hundreds of threads 
in a concurrent manner. The data parallel architecture of a GPU is 
particularly suitable to perform computation intensive tasks. GPUs 
offer orders of magnitude more computation power than CPUs and are 
becoming increasingly popular for general purpose computations to 
attain high speed-ups. A large set of problems in molecular dynamics, 
physics simulations, and scientific computing [34] have been tackled 
by mapping them onto a GPU. NVIDIA has introduced a GPU 
programming model called Compute Unified Device Architecture 
(CUDA) which enables the programmer to write C-like functions 
called kernels with some extensions that leverages programmers to 
efficiently use the graphics API. Each kernel is executed by a batch of 
parallel threads. CUDA provides three key abstractions: a hierarchy 
of thread groups, shared memories, and barrier synchronization [34].

In this paper, a combination of matrix-matrix product and 
wavefront methods will be used to parallelize the progressive 
alignment stage of ClustalW. The paper is organized as follows: 
Section 2 provides a method to accelerate the progressive alignment 
stage of ClustalW and section 3 evaluates its performance and 
compares it to the CPU implementation.

Materials and Methods
The performance of the ClustalW algorithm can be improved 

using the parallel architecture of the GPU. This particularly holds for 
the third stage, the alignment of the sequences using a guide tree.

First, a matrix-matrix product based approach to profile-sequence 
alignment will be introduced [35]. The technique of Bassoy et al. [32] 
is similar, but required additional memory and clock cycles.

Given a multiple alignment of length m by its profile P on the 
alphabet Σ’ = Σ’ U {−} and a sequence x of length n, the score between 
a column p of the profile and a character a∈ Σ’ is [4]

   

      (1)

Profile-sequence alignment algorithm can be converted into 
a matrix-matrix product by separating the data dependent and 
independent parts. First, the data independent part calculates three 
scalar products. The diagonal entries of the forward table are stored 
in m × n matrix D. Two vectors hand vof lengths m and n are used to 
store the vertical and horizontal entries of the forward table. Second, 

Figure 2: ClustalW based sequence alignment between the tat and 
vpu proteins from HIV 1 calculated from EMBL-EBI using the BLOSUM 
substitution matrix. The gap opening and the gap extension penalties for 
pairwise alignments are 10 and 0.1, respectively, and the initial gap penalty 
and the gap extension penalty for multiple alignments are 25 and 0.2, 
respectively.

Stage O(Time)

Distance matrix O(n 2 l 2)

Guide tree O(n 3)

Progressive alignment O(nl 2 + n 2 l)

Total O(n 2l 2 + n 3)

Table 1: Complexity of the ClustalW algorithm by stage [20].
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these values are used in the data dependent part for calculation of the 
forward table entries.

The profile column –p= (0,…,0,1)T represents a column consisting 
of blanks having relative frequency of blank 1. Take the extended 
alphabet Σ'  = {a1,…,al}, where al equals blank, and assign

 wa=(σ(a,a1),…,σ(a,al))T, a∈Σ'.   (2)

The vectors h and v can be computed as

 ( ) ( ), , ,
j

T
j p j j p p x

b
h x x b wσ σ= − = ⋅− = − ⋅∑  (3)

( ) ( ) ,, , .T
i i i b i

b
v p b p p wσ σ −= − = − ⋅ = ⋅∑   (4)

The matrix D of size m × n is calculated as

  
( ) ( ), ,, , ,

j

T
i j i j j i b i x

b
D p x x b p p wσ σ= = ⋅ = ⋅∑  (5)

The calculations of h, v, and D can be written into a matrix-vector 
product. For this, take the l × n matrix W

The values of the vectors h and v and the matrix D are determined 
as

      (6)

      (7)

                                                  (8)

To calculate first column of the forward table, take the lower 
triangular m × m matrix Bm

      

                 
 

      (9)

Similarly, the first row is calculated by having the n × n upper 
triangular matrix Bn

                            

                

      (10)

This gives the algorithm PROSEQALIGNMATVECPRODV2.

Algorithm 1: PROSEQALIGNMATVECPRODV2(x,P).

Require: sequence x = x1 . . . xn and profile P = p1 . . . pm

1: S0,0 ← 0 {initialization}

2: v ← PT · w−

3: 

4: S*,0 ← Bmv

5: S0,* ← hBn

6: for i ← 1 to m do {calculation}

7: Di ← pT
i ·W

8: end for

9: for i ← 1 to m do {maximization}

10: for j ← 1 to n do

11: Si,j←max{Si-1,j+vi,Si,j-1+hj,Si-1,j-1+Dij}

12: end for

13: end for

14: return S

The matrix D can be computed by matrix multiplication as

D = PT. W.     (11)

This resultant algorithm is PROSEQALIGNMATPRODV2.

Five versions of profile-sequence alignment algorithm on GPU 
have been considered.

Algorithm 2: PROSEQALIGNMATPRODV2(x,P).

Require: sequence x = x1 . . . xn and profile P = p1 . . . pm

1. S0,0 ← 0 {initialization} 

2. v← PT .w- 

3. h ← −T
P ·w

4. S*,0 ← Bmv 

5. S0,* ←hBn

6. D ← PT.W

7. for i ← 1 to m do {maximization}

8. for j ← 1 to n do

9. Si,j←max{Si-1,j+vi,Si,j-1+hj,Si-1,j-1+Dij}

10. end for

11. end for

12. return S

•	 MatVecProd V1: Matrix-vector product implementation 
using cublasSgemv [32].

•	 MatVecProd V2: Matrix-vector product implementation 
using cublasSgemv.

( )1 2

111
1 1

...

1
n

T
n p x x xh B w w w

 ⋅⋅⋅
 

⋅⋅⋅  ⋅ = − ⋅ ⋅⋅  ⋅ ⋅ ⋅⋅
 
 

( )1 1
.

n

T T T
p x p x p xw w w= − ⋅ ⋅⋅⋅ − ⋅ + ⋅⋅⋅ + − ⋅

( )1
,..., .

nx xW w w=

,Tv P w−= ⋅

,T
ph W= − ⋅

,T
i iD p W= ⋅

1

1
1 1

1 1 1

T

m
T
m

p
B v w

p
−

        ⋅  ⋅⋅ = ⋅⋅ ⋅⋅  ⋅⋅ ⋅⋅       ⋅⋅⋅ 

1

1 2

1 2

.
...

...

T

T T

T T T
m

p w
p w p w

p w p w p w

−

− −

− − −

 ⋅
 

⋅ + ⋅ =  
  ⋅ + ⋅ + + ⋅ 

T
ph W←− ⋅



Austin J Comput Biol Bioinform 1(2): id1008 (2014)  - Page - 04

Hanif MK Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

•	 MatProd V1: Matrix-vector product implementation using 
cublasSgemm [32].

•	 MatProd V2: Matrix-vector product implementation using 
cublasSgemm.

•	 SMWavefront 256: Wavefront approach using shared 
memory having block size 256 [35].

For MatVecProd V1 and MatProd V1, results are taken up 
to sequence length 6,000. A sequence length of 10,000 requires 
approximately 1145 MB to store matrices which is well beyond the 
capacity of available global memory (1024 MB). A maximum speed-
up factor of approximately 28 is attained when compared with 
optimized Intel CPU implementation (Figure 3). Parallel versions 
of profile-profile alignment are given in [33]. The results show that 
a mixture of wavefront and matrix-matrix product methods can be 
useful for the parallelization of the progressive alignment stage.

The approach adopted is similar to that in [19]. First, the 
intermediate nodes of the guide tree are labeled by post-order 
traversal. Two vectors are used to maintain the right child and left 
child of the nodes. One flag vector is required to keep track whether 
the node has been aligned. The flag for the leaf nodes is set to 1 when 
the alignment is not required. The left and right children indices are 
0 for the leaf nodes.

The flag vector is checked to identify the nodes of the guide tree 
to be aligned. An alignment at an intermediate node can only be 
performed if the right and left children have been aligned. In first 

phase, the leaf nodes are aligned using pairwise sequence alignment 
since the left and right children are assumed to be aligned as indicated 
in the flag vector. In next phase, the flag vector is again checked to 
find potential candidates for subsequent alignment. This process 
continues until the overall multiple sequence alignment is obtained 
and the flag vector contains 1 for each node.

The frequency based profiles are constructed for the intermediate 
nodes. A profile and a sequence are aligned by the matrix-matrix 
product while two profiles are aligned using the wavefront method 
on the GPU. The traceback is performed on the CPU to find the 
alignment by adding gaps in the aligned sequences.

Results and Discussion
The ClustalW progressive alignment stage has been implemented 

on an Intel Core 2 Duo 6600 CPU (2.40 GHz) running openSUSE 11.4 
linux distribution and CUDA version 4.0 on an NVIDIA GeForce 
GTX 560 Ti graphics card. The tests have been conducted using a 
serial gcc compiler (version 4.4.1) and an NVIDIA nvcc compiler. 
The performance of the parallel progressive alignment stage has been 
measured by the speed-up. The dataset for the implementation of the 
ClustalW algorithm is similar to that in [19]. The protein sequence 
dataset consists of the HIV dataset available at the NCBI database. 
The dataset has been divided into several subsets:

•	 400 sequences of average length 856 and 1000 sequences of 
average length 858;

•	 2000 sequences of average length 266 and 4000 sequences 
of average length 247;

•	 4000 sequences of average length 57 and 8000 sequences of 
average length 73.

The execution times have been averaged over ten runs for each 
data subset. The times for memory allocation and data transfer to 
or from the GPU have been neglected. The input to the progressive 
alignment stage is a guide tree which has been generated by the 
ClustalW program from the EMBL-EBI website.

The speed-up for the progressive alignment stage is illustrated in 
Figure 4. Note that profile creation and traceback have been performed 
on the CPU and have not been neglected. The data subsets given by 
longer sequences have achieved a speed-up of one order of magnitude 

Figure 3: Speed-ups of profile-sequence alignment algorithms. Figure 4: Speed-up for progressive alignment stage of the ClustalW.
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since the matrices to be multiplied utilize the hardware resources 
rather efficiently. The data subsets given by shorter sequences show a 
similar behavior due to the possibility to process multiple sequences 
in each pass. The computation-to-communication ratio of wavefront 
approach for sequences and profiles [33] of average length is low 
which impacts the speed-up exhibited by the data subsets of average 
length sequences. The maximum speed-up attained is much better 
than the speed-up of approximately 6 exhibited by progressive 
alignment stage of MSA-CUDA [19].

Conclusion
This paper has provided a parallel algorithm for the progressive 

alignment stage of the ClustalW algorithm onto the GPU using a 
mixture of algorithms: matrix-matrix product for profile-sequence 
alignment and wavefront for profile-profile alignment. The results 
have shown a performance increase of more than one order of 
magnitude for several data sets considered.
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