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Abstract

This review focuses on approaches to understand the underlying mechanisms 
of Diabetes mellitus (DM) associated with the long term complications of this 
disease. The long term complications of DM are related to the phenomenon 
of Metabolic Memory (MM) as discussed in this review. It is proposed that 
peripheral blood B cells can be utilized to analyze methylated gDNA-based 
mechanisms underlying the relationship of hyperglycemia to the induction of 
tissue dysfunctions related to impaired cell division with special reference to 
DNA replication genes that are common among mammalian cells. It should be 
noted that dysfunction in cell division and the DNA replication machinery affects 
a wide spectrum of tissues in patients with DM and subsequent MM. In this 
regard, rationale for the use of B cells to approach this problem is discussed. 
It is proposed that such an approach will provide epigenetic data pertaining 
to 1) methylated gDNA changes in DM/MM, 2) concomitant gene expression 
changes associated with these methylation changes, and 3) functional changes 
that can establish a link between DNA methylation and impaired cell division/
DNA replication in the peripheral blood B cell of patients with diabetes.
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and MM have been proposed to include: 1) the involvement of excess 
reactive oxygen species, 2) the involvement of advanced glycation 
end products, and 3) alterations in tissue-wide gene expression 
patterns [2,3]. It should be noted, however; that the heritable nature 
of metabolic memory [26,27] suggests a role for the epigenome. The 
epigenome comprises all chromatin modifying processes (including 
DNA methylation and histone modifications) that allow cells and 
organisms to rapidly respond to changing environmental stimuli 
[28-30]. These processes not only allow for immediate adaptation 
but also allow the cell to “memorize” these encounters [28-30]. The 
underlying molecular mechanism(s) of MM have been examined 
using both animal model approaches and in vitro based studies [4-
10]. Such studies have established that the initial hyperglycemic 
episode(s) results in permanent aberrant gene expression in DM 
target tissues. With the majority of epigenetic research focusing on 
histone modifications [31-40] and microRNA mechanisms [41-46] 
much less is known about the role of HG-induced persistent gDNA 
methylation changes that occur in both Type 1 and Type 2 DM. Using 
a DM/MM animal model, our laboratory has previously reported that 
HG induces aberrant gDNA methylation with concomitant altered 
gene expression patterns that correlate with persistent diabetic 
complications [8,47]. The role of HG-induced gDNA methylation 
changes in cells, as related to persistent MM dysfunction, remains 
unclear. As a means to understanding how epigenetic mechanisms 
regulate the process of metabolic memory within cells, previous 
studies have utilized the lymphocyte fraction obtained from patients 
with diabetes [36-38,48]. This approach creates complications in 
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Introduction
Overview of DM and MM as related to epigenetic processes 
and peripheral blood B cells

Diabetes mellitus (DM) will affect over 400 million worldwide 
by 2030 using current epidemiological methodologies [1]. Diabetes 
mellitus is classified as a disease of metabolic dysregulation [2,3] 
leading to long term complications affecting a wide variety of tissues 
and resulting in multiple pathologies such as diabetic retinopathy, 
nephropathy, altered angiogenesis, and impaired wound healing, 
to name only a few [2,3]. Evidence from the bench [4,10] and from 
large scale clinical trials [11-25] reveal that complications from 
the onset of Hyperglycemia (HG) progress unimpeded via the 
phenomenon of “Metabolic Memory” (MM) even when glycemic 
control is pharmaceutically achieved [11-25]. This clinical finding 
applies to both Type 1 and Type 2 diabetes (T1 DM and T2 DM). The 
underlying molecular mechanisms of hyperglycemic complications 
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the interpretation of the results because it reflects pools of cells that 
likely display different gDNA methylation patters (e.g. T-cells versus 
B-cells). To eliminate this problem we propose that one focus on a 
specific lymphocyte subtype, namely the peripheral blood B cell. As 
explained below, there are advantages to selecting the B cell over 
other lymphocytes. In broad terms, this cell enables one to examine 
the problem of cell division and DNA replication in either Type 1 or 
Type 2 patients in a less invasive manner than is required for other 
tissues of the body. Given the conserved nature of cell division/DNA 
replication among mammalian cells, such an approach could shed 
light on a process that underlies a broad range of tissue dysfunctions 
related to diabetic pathologies (e.g. retinopathy, nephropathology, 
altered angiogenesis, and impaired wound healing) in long term DM 
[2,3]. 

Body of the Review
A proposed experimental approach to ascertain the role 
of changes in methylated gDNA patterns to the process of 
altered cell division/DNA replication in DM

Given the impact of DM on society, it is important to decipher 
the molecular mechanisms of the long term complications of DM as 
related to the epigenome. One experimental approach to this problem 
could center around testing the hypothesis: “Persistent altered division 
of B cells (CD19+/CD20+) in the long term DM patient arises in part 
from hyperglycemia-induced aberrant gDNA methylation of genes 
related to cell division/DNA replication in the distal and proximal 
“Methylated Regions” (MRs) of these genes”.  The use of Blood B cells 
has advantages for approaching this problem for a number of reasons 
to include: 1) cell division/DNA replication processes are essential 
to the B cell life cycle and as part of the peripheral blood are an 
easily accessible cell type from Control and T1 or T2 DM patients; 
2) B cells have been shown to have problems with cell division/DNA 
replication in DM that is inherit to the cell and separate from cellular 
signaling pathways [49-54]; 3) recent work has shown that B cells of 
DM patients have alterations in their gDNA methylation patterns; 
although the extent of these changes across the entire genome has 
not been determined as of yet [48]; and 4) it should be noted that B 
cells do have an important role in the generation of diabetes and are 
important to our understanding of the basic pathological mechanisms 
of this disease [55]. 

The focus on cell division/DNA replication dysfunction 
induced by gDNA methylation in DM creates challenges in regard 
to obtaining cells in sufficient numbers for gDNA methylation 
sequence analysis without the need for cell culture as a means to 
expand cell number prior to epigenetic analysis given that cell 
culturing can itself induce epigenetic changes in cells [56]. Problems 
pertaining to isolation procedures would of course apply to both 
healthy (Control) individuals and individuals with either T1 or T2 
diabetes. In this approach, cell isolation from patients is simplified 
because B cells (in both healthy and DM patients) are found in high 
numbers in the peripheral blood and are readily purified by FACS. 
It should be noted that hyperglycemia is the primary trigger for 
gDNA-methylation changes and therefore because hyperglycemia 
[to some extent] occurs in all individuals with DM, it applies to both 
T1 and T2 patients with the disease. In this approach, it should be 
noted that B Cells (CD19+/CD20+) are used as a paradigm model 

for cell division/DNA replication processes common to most cells 
of the body when one notes the involvement of a common tool-
kit of genes for the replication machinery of the nucleus (e.g. such 
members as DMNT1, MCMs, ORCs, etc) In this approach, B cells 
can be obtained from the peripheral blood of healthy [Control] and 
diabetic patients [Type 2 or 1] to identify persistent aberrant gDNA 
methylation with concomitant gene expression pattern changes that 
regulate cell division.DNA replication in diabetes. In this regard, 
previous studies have established that cell division is altered in B cells 
of diabetic patients [49-54] and very recent studies have established 
that gDNA methylation changes occur in the B cells following 
hyperglycemic episodes in patients with diabetes [48]. Bioinformatics 
analysis of global gDNA single nucleotide bisulfate sequencing in 
combination with concomitant gene expression analysis would 
allow the identification of gene-associated MRs that are either distal 
or proximal relative to the gene’s transcription start site and that 
correlate with misexpression of their transcripts. Methylated Regions 
have been shown to have an important role in the regulation of gene 
expression and have also been shown to have some role in epigenetic 
changes within the genome [57-60]. They have been shown to be as far 
upstream as 30kb of the Transcription Start Site (TSS) [57,58] as well 
as in a more proximal position near the TSS [61]. Recent published 
studies by our laboratory have identified MRs as far upstream as 
6-13kb from the TSS in the DM and MM states following initial 
hyperglycemia [62]. It should be noted that methylation changes can 
also occur within the gene proper [63]. The positioning of methylated 
regions (MRs) in the genome in such unpredictable regions relative 
to the TSS necessitates the use of global gDNA single nucleotide 
bisulfite sequencing to identify them via bioinformatics analysis. 
Their role in the gDNA-methylation changes seen in diabetes is not 
understood; although, recent data from our laboratory indicates 
they appear to have a role in the persistence of tissue dysfunctions 
in Metabolic Memory [62]. As indicated above, gDNA methylation 
changes within the MRs of these genes can be analyzed in terms of 
impairment of Transcription Factor (TF) binding to their respective 
DNA binding sites (identified through bioinformatics analysis of 
methylated gDNA sequence analysis data) via ChIP analysis. This 
would directly establish a link between gDNA methylation and 
altered gene expression because of alterations in TF binding to their 
DNA binding sites.	

Mechanisms related to epigenetics in the onset and 
propagation of DM, with particular reference to cell 
division/DNA replication processes

The role of epigenetics in diabetes is an important and expanding 
area of study. In this context it is important to note that the role of 
gDNA methylation in DM (as opposed to histone modifications 
and microRNA function) is much less understood or studied. This 
is particularly true for the role of epigenetic Methylated Regions in 
the process of hyperglycemia-induced gDNA methylation changes. 
Methylated Regions of gDNA have been implicated not only in 
the regulation of gene expression, but also in the overall control 
of epigenetic changes in the cell [57-60]. As a general overview, 
epigenomes consist of all the chromatin modifications for a given cell 
type and are responsible for a cell’s unique gene expression pattern. 
These chromosome modifications support cell differentiation and 
change throughout development [64-66]. In addition, they are 
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responsive to external conditions, are altered in disease [67], and 
are mitotically stably inherited [8,26,27]. In general, epigenetic 
mechanisms include: 1) post-translational histone modifications, 2) 
non-canonical histone variant inclusion in octomers, 3) chromatin 
access changes through gDNA methylation, and 4) gene expression 
control through non-coding microRNAs [68-71]. Together, these 
processes allow cells to quickly respond to changing environmental 
conditions [28,29] and all cells to “memorize” these encounters once 
the stimulus is removed [28,29]. Therefore, because gene expression 
changes resulting from epigenetic processes are stable in the absence 
of the signal that initiated them and are heritable through cell 
division; they have important in terms of a potential mechanism(s) 
underlying metabolic memory (MM). Advances have been made 
towards understanding the roles that histone modifications [31-34,36-
40,72] and microRNAs [41-46,73] play in the metabolic memory 
phenomenon; however, as indicated, much less has been documented 
regarding the role of gDNA methylation [8,74-76]; especially as 
related to diabetes [8]. In over-view, gDNA methylation occurs 
predominantly as 5-methyl-cytosine [5mC]; mostly in the context of 
CpG dinucleotides. In mammalian genomes, these dinucleotides are 
clustered into regions (in order of decreasing CpG density) termed 
islands, shores, shelfs, and open seas [77,78]. Multiple roles for gDNA 
methylation have been proposed, to include: gene silencing, silencing 
of transposable elements, developmental regulation of transcription, 
cell cycle control, and differentiation have been documented [79-83]. 
It was previously thought that hypermethylation of CpG islands in 
promoter regions acted to inhibit promoter activity by maintaining 
chromatin in a stably repressed state that caused changes in gene 
expression patterns. In contrast to this, more recent studies indicate 
that while this is correct for some loci; the majority of tissue specific 
expression and cancer-induced aberrant expression is governed 
by variations in the shore regions [78]. Additionally; genome wide 
gDNA methylation analyses have indicated that methylation in 
the “bodies” of active genes is significantly higher than those of 
inactive genes [84,85]. This appears to be highly conserved and may 
function to suppress inappropriate transcription, regulate mRNA 
splicing, modulate elongation, and regulate tissue specific alternative 
promoter usage [86-90]. Due to its critical role in gene expression, 
altered gDNA methylation is associated with several human diseases 
including many cancers [91-95]. In addition, changes in “normal” 
gDNA methylation are correlated with many aspects of diabetes to 
include: susceptibility to DM [96-98], insulin resistance [99], diabetes 
complication development [99], and early detection [100-102]. 
Recently, a comprehensive genomic gDNA methylation profiling of 
T2 diabetic islets revealed that CpG loci displayed a hypomethylation 
phenotype and this finding may provide insight regarding diabetic 
islets and disease pathogenesis [103]. The first report demonstrating 
a cause and effect relationship between hyperglycemia and altered 
gDNA methylation related to genomic hypomethylation within the 
liver of T1 diabetic rats as early as 2 weeks post hyperglycemia onset 
[76]. Using primary aortic endothelial cells exposed to high glucose [24 
hr] under in vitro conditions, Pirola et al. performed comprehensive 
analysis of both histone acetylation and gDNA methylation [75]. In 
their study, these investigators observed significant alterations in 
gDNA methylation patterns and showed that induced methylation 
changes localized to regions within five kilobases of transcriptional 
start sites. They also found broad changes to H3K9/K14 acetylation 

and reported that regionalized hyper-acetylation correlated with 
gDNA hypomethylation and hyperglycemia-induced gene induction. 
These studies were limited to in vitro conditions and did not examine 
results from a prolonged hyperglycemic state or the metabolic 
memory state. In total, such studies establish a relationship between 
gDNA methylation and DM. 

To provide supporting data that gDNA-methylation changes 
occur in the long-term diabetic state (described earlier as the MM 
state), our laboratory has recently reported, using a DM/MM animal 
model [8], that genes fundamental to cell division have altered 
methylation patterns in DM and this alteration continues into MM 
[62]. The functional groups that were found in the DM state and 
persisted into the MM state were identified by bioinformatics analysis 
to represent the DNA replication and DNA metabolism groups with 
up-regulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 
genes of these groups [genes fundamental to DNA replication and 
cell proliferation] [62]. Methylated Regions of gDNA were reported 
as far as 6-13 kb upstream of the transcription start site for a subset 
of functionally important genes [e.g.dnmt1, mcm2, and orc3] 
within these groups. As indicated, these genes are fundamental 
to the cell division/DNA replication processes. It should be noted, 
that alterations in the human MCM2 gene has also been reported 
for patients with diabetes [104]. This indicates interesting parallels 
between the DM/MM animal model studies and the human diabetic 
condition; thereby providing some validity to the use of the DM/MM 
animal model. This data establishes a tie between gDNA methylation 
changes and gene expression changes in transcripts related to the 
control of DNA replication and thereby, cell division. 

Lastly, MRs are associated with in silica identified Transcription 
Factor (TF) binding sites whose methylation is changed in the DM 
and MM state as studied in the DM/MM animal model by our 
laboratory (unpublished data). Published studies with mammalian 
cells have shown that such methylation changes are known to perturb 
TF binding to their respective DNA binding sites [105]. Methylation 
of TF binding sites in the proximal gene region of the human CTGF 
gene (involved in the regulation of endothelial cell division) has been 
reported for T2 DM patients [61] and also in our DM/MM animal 
model (unpublished data); again showing parallels in the process of 
gDNA-methylation changes found in our DM/MM animal model 
with that of patients with DM. The clinical findings regarding CTGF 
were discussed in terms of the long term complications seen in T2 
DM patients; suggesting that alterations in gene expression of CTGF 
triggers dysfunction in processes targeted by this gene. Extensive 
work by others has established that CTGF is critical in the regulation 
of endothelial cell proliferation as it relates to angiogenesis [106-
109] and alterations in blood vessel growth [both angiogenesis and 
neovascularization] are known to be altered in diabetes [11,110-
112]. This establishes at least one human gene related to cell division 
regulation that is altered in DM via gDNA methylation processes. 
In line with these studies, a recent report by Ollikainen et al. [106] 
indicates that lymphocytes and leukocytes of T2 DM patients (and 
pre-condition patients) also exhibit de-methylation of proximal 
promoters in human genes. It should be noted that the studies of 
Ollikainen et al. [106] describe hypomethylation patterns for a wide 
variety of genes. In aggregate, these studies establish relationships 
between gDNA methylation and concomitant gene expression 
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changes associated with tissue dysfunction and impaired cell division 
in the diabetic patient. The application of these questions utilizing the 
B cell as outlined in this review should expand our understanding of 
the relationship of gDNA methylation to impaired cell division.

Summary and Conclusion
This review has focused on the problem of epigenetic mechanisms 

underlying DM and MM. It has discussed this in terms of the long 
term deficits observed in fundamental cellular processes such as cell 
division/DNA replication. Based on current literature, the review has 
described experiments and related literature to analyze methylated 
gDNA-based mechanisms to explain, in part, the relationship of 
hyperglycemia to the induction of tissue dysfunctions related to 
impaired cell division/DNA replication using the peripheral blood 
B cell. In this context, cell division/DNA replication processes 
are affected in a wide spectrum of tissues in DM. It proposes an 
experimental approach to this problem utilizing the human blood 
B cell as a paradigm for fundamental aspects of the cell division 
processes (e.g. DNA replication). It was noted that unlike many 
tissues, peripheral blood B cells can be easily obtained from both 
control and DM patients and it was suggested that such an approach 
will provide, in total, a broad spectrum of pertinent information 
related to: 1) epigenetic-related sequence data, 2) gene expression 
data, and 3) functional studies that will establish a link between 
gDNA methylation and subsequent alterations in gene expression 
regulation that can lead to impaired cell division/DNA replication. 
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