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Human neurological disorders such as Parkinson’s disease, Huntington’s disease, Amyotrophic 
Lateral Sclerosis (ALS), Alzheimer’s disease, Multiple Sclerosis (MS), stroke, and spinal cord injury 
are caused by loss of neurons and glial cells in the brain or spinal cord.

Cell replacement therapy and gene therapy to diseased or injured brain may provide the basis 
for the discovery of new therapeutic strategies for wide varieties of neurological diseases.

In recent years, the potential of different stem cell sources such as embryonic stem cells, 
mesenchymal stem cells, and neural stem cells have been investigated to obtain new therapeutic 
procedures. Although researchers developed noticeable progress in stem cell therapy for neural 
diseases, there are still many obstacles to be overcome before clinical application of this therapy 
for patients. It is still uncertain what kind of stem cells would be an ideal source for cellular grafts. 
The mechanism by which transplantation of stem cells leads to an enhanced functional recovery 
and structural reorganization must to be better understood.

Stem Cell and Regenerative Medicine
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Alzheimer’s Disease (AD): Treatment of AD with stem cell technology depends on the 
neurogenesis capacities of stem cells. The strategy is to utilize stem cells to physically replace the 
neurons that are lost in the neurodegenerative stages in patients. The four types of human stem 
cells-Neural Stem Cells (NSCs), Mesenchymal Stem Cells (MSCs), Embryonic Stem Cells (ECSs) 
and Induced Pluripotent Stem Cells (iPSCs)-each holds unique properties that could be used in 
AD’s stem cell therapy regime in a variety of ways [1].

According to previous studies, transplantation of MSCs derived from human umbilical cord 
blood, improved spatial memory, decreased amyloid plaques in the brain and inhibited the release 
of proinflammatory cytokines from the microglia in animal models of AD [2,3].

Transplantation of hNSCs, murine septal precursors, porcine cholinergic precursors or human 
fetal basal forebrain neurons into cortical areas of rodents resulted in stable engraftment of the 
introduced cells, some of which differentiated into degenerated cholinergic neurons [4-6]. In 
spite of this noticeable conclusion, this strategy was limited by the inability to generate highly 
purified basal forebrain cholinergic neurons. Thus, new candidate cells for transplantation should 
be introduced. A new method for successful generation of this type of neurons from hESCs was 
described by Bissonnette and colleagues in 2011 [7] using diffusible ligands or over expression of 
Lhx8 and Gbx1. Moreover, endogenous neurogenesis increase in hippocampus might be another 
strategy to stem cell therapy in AD [8,9]. Currently, different clinical trials are evaluating the 
safety and efficacy of various human stem cell sources for AD treatment.

Parkinson’s disease (PD): Recently, scientists enter a new era of stem cell derived 
dopaminergic neuron transplants for PD. Embryonic stem cells have been shown to differentiate 
into midbrain dopaminergic neurons [10,11] and  to  provide similar efficacy to Fetal Ventral 
Mesencephalic (fVM) transplants in preclinical studies [12]. Long term survival and function 
of autologous iPSC derived midbrain ‑ like dopaminergic neurons has recently been reported 
in nonhuman primates [13]. In preclinical studies, mesenchymal stem cells have been shown 
to differentiate into tyrosine hydroxylase expressing cells [14], but their capacity to make true 
midbrain dopaminergic neurons is unproven. Thus, although benefits have been reported in 
animal models of PD [14,15], the quality of the response is insufficient to allow these cells to 
go to proper clinical trials. Moreover induced dopaminergic neurons have been reprogrammed 
from fibroblasts [16,17], but reprogramming of true midbrain dopaminergic neurons has yet 
to be achieved. This source would allow autologous grafting, as well as greatly reducing graft 
overgrowth and/or tumour formation risks associated with grafts from stem cell sources. In 
spite of these researches, more clinical studies are needed to provide safer and efficient stem cell 
therapies to patients with PD.

Stroke: Recent scientific results have given a new insight into the therapeutic ways of stroke. 
Jin et al. in 2011 found that transplanting of human NSCs into the brain of a rat model of stroke 
might enhance both cellular proliferation and neuroblast formation in Subventricular Zone (SVZ) 
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andsimilar results have been observed in human after stroke [18,19]. In addition to benefits, 
as other clinical approaches, there are different challenges. For instance, in mentioned trial 
the survival of new cells seems to be poor [20,21] and many of neurons or neural precursors 
either die or remain undifferentiated [22]. According to the findings obtained through preclinical 
models, treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily 
a beneficial effect on functional outcome most likely via supportive cellular processes such as 
neurogenesis. Moreover, the combination therapy, G-CSF with mesenchymal cells (G-CSF + BM-
MSC or G-CSF + BM-MNC) did not further improve behavioural indices, neurogenesis or infarct 
volume as compared to G-CSF alone in aged animals. Thus, better results with regard to integration 
of transplanted cells in the aged rat environment have been obtained using iPS of human origin; 
mesenchymal cells may be used as drug carriers for the aged post-stroke brains. Therefore, while 
the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice 
involving older post stroke patients, successful regenerative therapies would have to be carried 
out for a much longer time [23].

Each neurological disorder presents a new challenge for stem cell-based therapy as 
each disorder is distinct and need different approach for the treatment of these diseases. For 
example, consider the case for Parkinson’s disease in which only specific type of neurons are 
affected, but for AD and stroke, multiple type of neurons and their neurotransmitters phenotypes 
are affected thus making this strategies more challenging. Idea is that stem cells first force to 
migrate, differentiate and mature into multiple neuronal subtypes. These neuron cells restore 
a lost nerve supply to appropriate targets and need to establish their physiologically relevant 
afferent and efferent connectivity. Thus, these strategies seem not to be successful approach for 
diffuse disorder like AD or stroke. The other question need to be answer before going for a clinical 
treatment based on stem cell therapies, is to find out which stem cell source (hNSCs, hMSCs, HSCs, 
etc) best fits for which type of neurological disorder. In order to choose the correct stem cell 
source, it is necessary to know about the mechanisms of action of each one such as the control of 
proliferation, differentiation, survival, function and integration as well as their dosage and route 
of administration. Moreover, another important factor to take into consideration is bio safety 
during working with stem cell-based therapies. Extraction, preparation and administration are 
noticeable steps of working with stem cells to minimize risks in the patients.

In conclusion, results from studies in experimental models for neurodegenerative disorders 
are encouraging and provide supportive evidence that stem cell-based approaches can be 
developed into clinically useful strategies to promote recovery. However, still, many factors 
remain uncontrolled and greater insight is imperative for stem cell therapy to be effective, feasible 
and safe in the future and more clinical studies are needed to provide safer and efficient stem cell 
therapies to patients with neurodegenerative disorders.
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STEM CELL THERAPY IN CARDIOVASCULAR DISEASES
Stem cell therapy has the potential to overcome the limited regenerative capacity of the heart 

and induce cardiac repair and regeneration. Thus it can be used as a means for restoring function 
in the failing heart and for preventing extensive damage in hearts exposed to an acute ischemic 
injury. The purpose of this part is proposing a review about studies of adult stem cell therapies in 
treatment of patients with chronic ischemic cardiomyopathy and myocardial infarction.

In 2003, Perin et al. were the first to show that transendocardial injections of autologous bone 
marrow-derived mononuclear cells were well tolerated in patients with end-stage ischemic heart 
disease and severe left ventricular dysfunction, and their findings suggested that the treatment 
may have had positive effects on myocardial perfusion and contractility [24]. The first mononuclear 
cells injected in the United States Cardiovascular Cell Therapy Research Network trial was the 
largest trial until the year 2015 of autologous bone marrow-derived mononuclear cells in patients 
with ischemic cardiomyopathy and Left Ventricular (LV) dysfunction. No effect of therapy on pre-
specified endpoints was found. Further exploratory analysis showed a significant improvement 
in Left Ventricular Ejection Fraction (LVEF) associated with the percentage of CD34+ and CD133+ 
cells in the bone marrow samples [25]. The randomized clinical trial of adipose-derived stem and 
regenerative cells in the treatment of patients with non revascularizable ischemic myocardium 
trial was a first-in-man examination of autologous adipose tissue-derived mesenchymal cells in 
patients with ischemic cardiomyopathy. According to the results of this trial isolating cells from 
liposuction aspirates and injecting them transendocardially was feasible and well tolerated, 
and the treated patients showed preserved left ventricular function and possible benefits in 
coronary blood flow, scar size and exercise capacity [26]. Using stem cell populations obtained 
from the target organ, the heart, was the first trial in patients with post-infarction left ventricular 
dysfunction. In the cardiac stem cell infusion in patients with ischemic cardiomyopathy study 
by Bolli et al. c-kit+ cardiac stem cells were isolated from the right atrial appendage of patients 
undergoing coronary artery bypass grafting and were expanded in vitro for up to 4 months 
before being delivered autologously by intracoronary infusion. The results showed that the 
treatment was well tolerated and led to a significant increase in LVEF, a reduction in infarct scar 
size and improvement in quality of life [27]. Vrtovec et al. proposed the first randomized study 
about investigating the long-term effects of intracoronary administration of granulocyte-colony 
stimulating factor (G-CSF) mobilized CD34+ stem cells in patients with non-ischemic Dilated 
Cardiomyopathy (DCM). During the 5-year follow-up period, cell therapy was associated with a 
significant improvement in cardiac function and exercise capacity and a significant decrease in 
N-terminal pro b-type natriuretic peptide (NT-proBNP) levels. In an exploratory analysis, it was 
also found that total mortality rates were lower in patients randomized to the stem cell therapy 
group than in controls [28].

Several cell-based therapies for adjunctive treatment of acute myocardial infarction have 
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been investigated in multiple clinical trials, but the benefits still remain controversial. In 2013 De 
Jong et al. evaluated the efficacy of Bone Marrow–Derived Mononuclear Cell (BMMNC) therapy 
in patients with acute myocardial infarction and also explored the effect of newer generations 
of stem cells including MSCs, bone marrow progenitors (CD133+/CD34+ cells), adipose tissue–
derived regenerative cells, and CDCs. They showed that intracoronary infusion of BMMNC is safe, 
but does not enhance cardiac function on MRI-derived parameters, nor does it improve clinical 
outcome [29]. This was the first meta-analysis that included data from studies using novel stem 
cell therapy approaches for cardiac repair.

Angina pectoris is chest discomfort experienced by patients with obstructive Coronary Artery 
Disease (CAD) when the demand for oxygenated blood exceeds the supply. The first randomized, 
controlled trial of stem-cell therapy in patients with refractory was reported by Losordo et al. in 
2011. Their results from this phase II study support the safety and efficacy of intramyocardially 
injected autologous CD34+ cells for symptom reduction and improved exercise capacity in 
“no-option” patients with refractory angina [30]. Mathiasen et al. found a similar benefit when 
treating patients with coronary artery disease and refractory angina with bone marrow-derived 
mesenchymal cells; over a 3-year follow-up period, the cell therapy reduced hospital admissions 
for cardiovascular diseases and showed excellent long-term safety [31].

Findings in stem cell therapy for cardiovascular diseases have provided new insight into 
treatment and repair damage in heart, an organ with a limited regenerative capacity. These 
approaches can be applied as integral parts of routine therapies for treating cardiovascular 
diseases.

STEM CELL THERAPY IN KIDNEY DISEASES
The number of patients with various kidney diseases and End-Stage Renal Disease (ESRD) 

increases each year. Therefore, there is a substantial need for novel therapies that have few side 
effects, while maintaining efficacy. 

Multiple preclinical studies have demonstrated that the administration of exogenous 
Mesenchymal Stem Cell (MSC) could prevent renal injury and could promote renal recovery 
through a series of complex mechanisms, in particular via immunomodulation of the immune 
system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, 
MSCs are being evaluated as a possible player in treatment of human kidney disease, and an 
increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based 
therapy in various kidney diseases have been proposed.

To date, numerous completed or ongoing in vitro and in vivo experiments involve the use of 
MSCs for treating different kinds of kidney diseases such as acute kidney injury, chronic kidney 
injury, focal segmental glomerulosclerosis, diabetic kidney disease, autoimmune disease, and 
kidney transplantation [32].
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Acute Kidney Injury (AKI): Previously called acute renal failure; the first clinical trial of 
allogeneic bone marrow MSC injection for AKI (NCT00733876) was completed in October 2013 
and involved 16 patients. Study results indicate the absence of specific or serious adverse events 
during a 6-month follow-up period. Preliminary analysis showed that MSC administration is safe 
at all tested doses, confers early and late protection of kidney function, and lowers both length of 
hospital stay and need for readmission [33]. In addition to MSCs, Induced Pluripotent Stem Cells 
(iPSCs) and Spermatogonial Stem Cells (SSCs) have been shown to differentiate into renal cells, 
though further clinical research is needed to fully explore potential therapeutic strategies [34]. 

Chronic Kidney Disease (CKD): Preclinical studies provide ample support for use of 
Endothelial Progenitor Cells (EPCs) and MSCs in CKD (35). In a systematic review and meta-analysis 
of 71 articles in animal models, Papazova et al. found that cell-based therapy reduced development 
and progression of CDK. Li et al. [35] found that human MSCs prevented hyperglycemia-induced 
podocyte apoptosis and injury [36]. Currently, various explorative studies are either ongoing or 
only just completed, and no preliminary result has been provided so far. 

Diabetic Kidney Disease (DKD), also called diabetic nephropathy: Rodents have served as 
the primary animal model of DKD [37]. Almost all in vivo studies of MSCs in models of DKD 
have been carried out in mice orrats. Pre-clinical studies have involved administration of 
autologous/syngeneic [38-40], allogeneic [41-46] and xenogeneic (human) [47-51] MSCs. Most 
studies employed MSCs of bone marrow origin but umbilical cord [50,51] and adipose-derived 
MSCs [39,47,49] have also been used. Further ongoing and new research efforts will be needed 
to maximise the likelihood of widespread future clinical application of MSCs and other stem/
progenitor cell therapies to investigate, primarily, the safety, feasibility, and tolerability and, 
secondarily, the preliminary efficacy of these kinds of therapies for DKD.

Focal Segmental Glomerulosclerosis (FSGS): In 2013 Belingheri et al. reported the first 
allogenic bmMSC treatment in a pediatric recipient of kidney transplantation with a form of 
FSGS not responding to any conventional and unconventional treatments [52]. In several months 
following transplant, no adverse event was observed, and the patient presented a stable renal 
function and stabilized proteinuria without the need of further plasmapheresis. Recently, 5 
refractory FSGS patients have participated in a clinical trial (NCT02382874) to evaluate safety 
and efficacy of intravenous infusion of allogeneic adMSC infusion. They will be followed up for a 
year following injection [32].

Kidney Transplantation: In ESRD patient’s kidney transplantation offers the best chance 
of survival and improves health-related quality of life compared to remaining on dialysis. 
Immune suppressive drugs have improved significantly the short-term outcome of the surgery. 
However, the long-term graft survival rate beyond the first year showed only a small increase 
[53]. The focus of recent researches has been on reduction of alloimmune injury and immune-
suppression-related side effects to optimise preservation of renal function [54-56]. Numerous 
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in vivo studies confirmed the immunomodulatory properties of MSCs, their effective regulatory 
role in immuneresponse and support of kidney repair [57]. The available data provide compelling 
evidence that these cells can down regulate the function of immune effect or cells that drive the 
host antigraft immune response and potentially promote the development of tolerance [56].

Although regenerative medicine provides new hope for a means to change the trends of 
various kidney diseases, scientists need more studies to confirm the feasibility and efficacy of this 
noval field.

STEM CELL THERAPY INAUTOIMMUNE RHEUMATIC DISEASES
Multisystem Autoimmune Rheumatic Diseases (ARD) is heterogeneous rare disorders 

associated with substantial morbidity and mortality [58]. Thus recent efforts are focused on 
introducing new medications in treatment of ARD. In addition to novel biological modulators 
with unpredictable and severe side effects, Stem Cell Transplantation (SCT) in animal models and 
clinical trials has offered new insight to ARD treatment. The first case of Hematopoietic Stem Cell 
(HSC) Transplantation (HSCT) in humans ARD was reported in 1995 by Tamm et al. [59].

The First International Symposium on (HSC) therapy in ARD was convened in Basel in 1996, 
which led to the development of the first consensus guidelines for HSCT in autoimmunity, 
recommending standardized protocols and establishment of the European Bone Marrow 
Transplant/European League against Rheumatism (EBMT/EULAR) registry [60]. Since then, over 
1,500 HSCT procedures for ARD, including Systemic Sclerosis (SSc), Rheumatoid Arthritis (RA), 
Systemic Lupus Erythematosus (SLE), Sjögren’s Syndrome (SS), and Juvenile Idiopathic Arthritis 
(JIA) have been registered.

There is incontrovertible evidence at immunomodulatory effects of MSCs on both the innate 
and adaptive immune responses. MSCs cannot only inhibit T cell, B cell, Dendritic Cell (DC), 
and Natural killer (NK) cell functions and proliferations but can also induce T regulatory cell 
(Tregs) [61,62] function and differentiation [63]. Another remarkable characteristic of MSCs is 
the property of immune privilege [64] as they express few of HLA class I molecules and none of 
HLA class II, CD40, CD80, and CD86, which contribute to the ability of MSCs to escape immune 
surveillance [63,65]. Patients with refractory ARD, especially SSc and SLE had successful 
treatment by applying SCT [66]. For other ARDs such as RA, inflammatory myopathies, Primary 
Systemic Vasculitis (PSV), and pediatric ARDs, such as JIA, effective approaches and clinical trials 
were implemented.

The first successful treatment using HSCT for SSc patients with untreatable pulmonary 
hypertension was reported in 1994 which led to the gradual acceptance of HSCT as a potential 
optional treatment regimen for severe SSc [67]. Various remarkable achievements to date indicate 
clear positive therapeutic effects of SCT for SSc patients.
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In 1996 Marmont et al. reported the first SLE patient receiving HSCT achieved notable 
clinical and immunologic improvement [68]. Since the first consensus statement in 1997, over 
200 patients worldwide with SLE have received auto-HSCT and have showed positive responses 
[60,69].

According to Gratwohl et al. severe, destructive, refractory symptoms of RA patients were 
improved after treating by biological agents, lymphoablative regimen combined with auto-SCT as 
a therapeutic modality [70]. This conclusion was reported in 1997. Moreover Mc. Sweeney et al. 
declared that preclinical data and anecdotal evidence shows allo-HSCT might be more effective 
than auto-HSCT [71].

Sjögren’s Syndrome (SS) is the most common chronic slowly progressive ARD, which typically 
affects the exocrine glands leading to xerostomia, keratoconjunctivitissicca, and systemic features 
[72]. Only a limited number of case reports of HSCT in SS are available. Three SS patients with 
refractory systemic vacuities or lymphoma receiving auto-HSCT developed amelioration of the 
vacuities and lymphoma but not the SS [73]. In 2012 Xu et al. published the results of 24 refractory 
SS patients receiving mesenchymal SCT demonstrated the feasibility, safety, and efficacy of 
MSCT. Most SS patients in this research reach durable increased salivary flow rate, considerable 
improvements in disease activity and organ function after MSCT [74].

PSV, Behcet’s Disease (BD), relapsing polychondritis are heterogenous group of ARDs with 
severe organ damage. The experiences of SCT for these diseases are limited but in 2001, 15 PSV 
patients received auto-HSCT and allo-HSCT [75]. Among them, three patients recovered completely 
and others showed amelioration of different symptoms (73). For BD and polychondritis patients, 
remission rate was beyond 90% but one third had a recurrence of the diseases [75].

JIA is the most common ARD in childhood with 0.2% mortality rate that its prognosis is still 
poor [76]. In 1997 the first auto-HSCT was applied for four patients that led to drug-free complete 
remission [77]. More clinical trials applied for other children demonstrated reasonable evidence 
[78].

During the past decades SCT for ARD has extensive development. Many patients have 
experienced remission, withdrawal of conventional medications, and improved quality of life 
after SCT but many still suffered from irreversible visceral organ damage. Moreover, because of 
the great heterogeneity of ARD, it is difficult to target an optimal SCT regimen for all ARD patients. 
Finally, the unacceptable high transplant-related mortality, rate of relapse as well as exorbitant 
prices continues to be a huge challenge. Thus, more clinical studies are needed to understand the 
mechanisms of ARD remission through successful SCT [79].
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