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Abstract

The contamination of soil by anthropogenic activities has raised many 
concerns in scientific community. There is an urgent need of reliable and 
nature friendly techniques for addressing these concerns. Vermiremediation 
and phytoremediation are two such dependable techniques. Vermiremediation 
involves earthworms to convert solid organic materials and wastes into 
vermicompost which acts as a soil conditioner and nutrient-rich manure. The 
contaminants in organic wastes which could pollute the soil can be significantly 
reduced using earthworms. The vermicompost generated from earthworms 
increases soil fertility (physical, chemical, biological). In vermicompost nutrients 
such as nitrogen, potassium, phosphorus, sodium, magnesium and calcium 
are in plant available forms. Vermicompost is increasingly considered in 
agriculture and horticulture as a promising alternative to chemical fertilizers. 
Phytoremediation involves plants and soil microbes to minimize the amount 
of contaminants (such as heavy metals) in the environment. Plants have 
capacity to uptake contaminants from the soil and execute their detoxification 
by various mechanisms (phytoaccumulation, phytostabilization, phytofiltration, 
phytodegradation, phytovolatilization). Plants store these contaminants in there 
tissues from where these can be harvested or dumped in safe sites. This study 
is aimed to document the various techniques and their role, with commercial 
examples, benefits, and drawbacks etc of phytoremediation and also effects of 
vermicompost on the soil fertility, physicochemical and biological properties of 
soil.
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such as nitrogen, potassium, phosphorus, sodium, magnesium and 
calcium [11,16] and can play a major role in soil nutrient management. 
The use of vermicompost can enhance the physiochemical properties 
of soil, which can increase the plant growth [17]. Phytoremediation 
involves plants and soil microorganisms to minimize the toxic effects 
of pollutants in the environment [18,19]. This technique is used 
to remove toxic metals and other organic pollutants. According 
to Mench et al. [20] plants amend soil fertility with application of 
organic materials. The present review article is aimed to document 
the effects of vermicompost on the soil fertility, plant growth, 
physicochemical and biological properties of soil and various 
techniques of phytoremediation and their role in soil stabilization. 

Vermicomposting

The process of vermicomposting involves earthworms to convert 
organic materials into vermicompost which acts as a soil conditioner 
and nutrient-rich manure. Vermicomposting technology is cost-
effective and eco-friendly technique that plays an important role in 
minimizing environmental pollution. The final vermicompost can be 
applied for agricultural purposes which provide maximum microbial 
activity to the soil [21]. Through vermicomposting, many researchers 
have successfully converted various types of industrial wastes into 
nutrient rich manure [22-24].

Introduction
Excessive use of chemical fertilizers deteriorates the soil properties 

(physical and chemical) and also contaminates the surrounding 
environment [1]. According to Chaoui et al [2]. excessive leaching 
of nutrients and salinity-induced plant stress can be caused by the 
excessive use of inorganic fertilizers. The joint application of organic 
and chemical fertilizers maintains the Soil Quality Index (SQI) [3]. 
The excessive use of chemical fertilizers without organic fertilizers can 
deteriorate the soil properties [1]. The physico-chemical characteristics 
of agricultural soils can be modified directly by the application of 
vermicompost which acts as a soil conditioner and nutrient-rich 
manure [4]. Vermicomposting involves joint interaction between 
earthworms and microorganisms to generate a homogeneous, stable 
and nutrient rich product called as vermicompost [5-8]. The final 
vermicompost is nutritionally improved as compared to traditional 
compost [9-11]. Vermicomposting process increases the rate of 
mineralization of organic substrates and enhances higher degree of 
humification [12]. Soil fertility can be enhanced by the application of 
vermicompost through physically (aeration, porosity, water retention, 
bulk density), chemically (pH, electrical conductivity, organic matter 
content) and biologically (microbial biomass, enzymes, micro and 
micro nutrients) [13-15]. Vermicompost is increasingly considered 
in agriculture and horticulture as a promising alternative to chemical 
fertilizers. Vermicompost is rich source of macro and micro nutrients 
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Nutrient content in vermicompost
Vermicompost produced from organic sources can play a 

major role in soil fertility and also in organic farming. The final 
vermicompost has higher macro and micro nutrients as compared 
to traditional compost [10]. Vermicompost is granular, with large 
surface area due to mineralization and degradation by earthworms 
[7,25]. The nutrient content in vermicompost (prepared from cattle 
dung) and traditional compost is shown in Table 1. 

Effect of vermicompost on soil quality, physico-chemical 
and biological properties 

Vermicompost increases the soil microbial population and 
acts as a rich source of nutrients. It increases the availability of 
nutrients (potassium and nitrogen) through improving phosphorus 
solubilization and nitrogen fixation [17]. Application of vermicompost 
can directly enhance the physiochemical and biological properties of 
soil. Vermicompost increases soil porosity, aeration, water holding 
capacity and infiltration [13]. According to Kale and Karmegam [26] 
earthworms in the soil add mucus secretion which enhances the soil 
stability. The combination of earthworms and microbes decreases the 
particle and bulk densities of soil which increases the porosity and 
aggregate formation of the soil [1]. Soil treated with vermicompost 
increases the available (N, K, P) and total (Ca, Cu, Fe, Mg, Mn, Na, 
Zn) macro and micro-nutrients in the soil [1]. Leaching problem of 
nutrients in soil can be reduced by the application of vermicompost. 
Bhattacharjee et al. [27] observed that the nutrient leaching from 
the soil is greatly reduced by the application of vermicompost 
which changes the physico-chemical characteristics of the soil. 
Vermicompost can also be used in acid and alkaline soils, due to its 
near neutral to alkaline nature of pH. According to Manivannan et 
al. [1] pH between 6-7 ranges increases the availability of nutrient 
content to the plants. Many researchers have observed that the soil 
pH increases in acidic soils and reduces in alkaline soils with the 
application of vermicompost [28,29]. In vermicomposting process, 
Electrical Conductivity (EC) of final vermicompost depends on 
initial raw material used [30]. Addition of vermicompost lowers the 
EC of soil due to increase in the exchangeable Ca2+ concentration, 
which allows higher leaching of exchanged Na+ and lowers the soil 
EC [31]. Vermicompost improves soil porosity and infiltration 

rate, which enhances salt leaching leading to decrease in EC of soil 
[32]. Vermicompost with EC value lower than 4.0 ds m-1 are ideal 
for organic soil amendments [33]. Application of vermicompost 
in soil increases the organic matter and biomass of soil microbes 
[1]. According to Atiyeh et al. [34] dehydrogenase enzyme activity 
was higher in vermicompost as compared to commercial medium. 
Application of organic fertilizers (vermicompost, neem cake, farmyard 
manure and ash) and biofertilizers to soil increases the enzyme 
activities (dehydrogenase, acid phosphatase and β-glucosidase [35]. 
Vermicompost increases the surface area for microbial activities and 
retention of nutrients [36,37]. Application of vermicompost increases 
the biomass of soil microbes, which increases the plant growth and 
fruit yield [38]. The scientific research on the plant growth by the 
application of vermicompost are still sparse. 

Effect of vermicompost on productivity and growth of 
plants

Many researchers studied the effect of vermicompost on 
productivity and growth of plants [39-42]. Vermicompost contains 
high levels of soil enzymes and plant growth hormones and also 
retains nutrients in soils for longer duration without affecting the 
environment [17,36]. Vermicompost can be used as a soil additive 
and plant container media for overall growth and development of 
plants [43]. According to Roy et al. [44] vermicompost increases the 
root and shoot weight and plant height as compared to traditional 
compost. Earthworms in the soil may impact the physico-chemical 
characteristics of the soil and other organisms (nematodes, 
collembolans) living within the soil [45]. Application of vermicompost 
accelerates the growth of crops and plants. Vermicompost contains 
enzymes and hormones that stimulate plant growth and makes it 
pathogen free [46]. Plant growth promoting substances and plant 
growth hormones (auxin, cytokinins, humic substances) produced by 
microbes have been reported from vermicompost by many researchers 
[47,48]. The final vermicompost is considered an excellent material of 
homogenous nature as it has reduced level of contaminants and holds 
more nutrients over a longer time without affecting the environment 
[49]. Many researchers [50-53] have reported that the vermicompost 
produced from animal dung, sewage and paper industry sludge 
contains higher amounts of humic substances, which have important 
role in growth and productivity of plants. So vermicomposting and 
vermiculture technology is economically sound, environmentally safe 
technology for organic waste degradation and can create employment 
opportunities for all weaker sections of the society. India, were a large 
amount of organic waste is available could produce million tons of 
vermicompost and will reduce the use of toxic chemical fertilizers. 
Hidalgo et al. [54] observed that the addition of vermicompost to a 
greenhouse potting medium (mixture of sand, pine bark and peat) 
showed a significant increase in water holding capacity and total 
porosity. Ferreras et al. [55] reported that addition of 20 ton ha-1 
of vermicompost in two consecutive years to an agricultural soil 
significantly improved soil porosity and fertility. Marinari et al. 
[56] reported that the elongated soil Macropores number increased 
significantly in corn field after a single vermicompost application 
equal to 200 kg ha-1 of N. Gopinath et al. [57] observed increase in 
total organic carbon and soil pH and decrease in bulk density of soil 
after application at a rate equal to 60 kg ha-1 of N of vermicompost 
in two consecutive growing seasons. Vermicompost is increasingly 
considered in agriculture and horticulture as a promising alternative 

Nutrient content Vermicompost Traditional compost

pH 8.92±0.09 8.40±0.10

EC (mS/cm) 2.82±0.03 3.22±0.02

TKN (%) 2.40±1.20 1.03±0.24

TOC (%) 37.12±0.11 45.40±1.01

C:N ratio 15.46±0.57 44.30±1.62

TAP (%) 1.49±0.81 0.92±0.30

TK (%) 1.90±2.08 4.01±1.20

TNa (%) 1.41±0.38 0.71±0.20

Zna 11.54±0.37 9.85±0.37

Cua 9.0 3±0.20 8.04±0.23

Fea 590.04±1.52 620.04±1.60

Mna 38.0 1±0.88 13.02±1.77

Table 1: Nutrient content of vermicompost and traditional compost.

Weight in mg/Kg. Source: Bhat et al., [10].
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to chemical fertilizers. Vermicompost not only produces yield with 
all nutrients but also at the same time increases the soil fertility and 
nutrient availability to the crops. Thus it is a double edged technology 
which plays a major role in sustainable development. 

Limitations of Vermicomposting
While vermicomposting offers substantial environmental 

benefits, it also is associated with a number of limitations as given 
below:

S. No. Plant species Metals accumulated References

1
Acorus calamus, Cyperus malaccensis, Eleocharis valleculosa, Equisetum ramosisti, Juncus effuses, Leersia 

hexandra, Neyraudia reynaudiana, Phragmites australis, Phalaris arundinacea, Polypogon fugax, Typha 
latifolia, and Typha angustifolia

Cd, Cu, Pb and Zn Deng et al., [64]

2 Brassica napus and Raphanus sativus Cd, Cr, Cu, Ni, Pb 
and Zn

Marchiol et al., 
[107]

3 Paspalum notatum, Pennisetum glaucum × P. purpureum, Stenotaphrum secundatum and  Vetiveria 
zizanioides Pb and Cd Xia, [108]

4

Achnatherum chingii, Adiantun capillus-veneris L., Arundinella yunnanensis, Artemisia lancangensis, 
Carpinus wangii, Fargesia dura, Juncus effuses, Lithocarpus dealbatus, Llex plyneura, Pinus yunnanensis 
Tranch, Populus yunnanensis, Polystichum disjurctam, Rhododendron decorum, Rhododendron annae, 

Rhododendron decorum, Rhododendron annae, Salix cathayana, Sambucus chinensis, and Trifdium repensl

Cd, Cu, Pb and Zn Yanqun et al., [63]

5 Carthamus tinctorius L., Cannabis sativa L., Malva verticillata L., Melilotus alba L., and Trifolium pratense L., As, Cd, Pb, and Zn Tlustoš et al., [109]

6 Bidens alba var. radiate, Cyperus esculentus L., Gentiana pennelliana Fern., Plantago major L., Phyla 
nodiflora L., Rubus fruticosus L., Sesbania herbacea and Stenotaphrum secundatum Cu, Pb and Zn Yoon et al., [65]

7

Aeschynomene indica L., Alternanthera philoxeroides (Mart.) Griseb, Aster subulatus Michx, Cyperus iria L., 
Cyperus difformis L., Digitaria sanguinalis (L.) Scop, Eleusine indica (L.) Gaertn, Echinochloa crus-galli (L.) 
Beauv, Echinochloa caudata Roshev, Echinochloa oryzicola (Ard.) Fritsch, Eclipta prostrata L., Fimbristylis 
miliacea (L.) Vahl, Isachne globosa (Thunb.) Kuntze , Monochoria vaginalis (Burm. f.) Presl, Oryza sativa 
L., Phragmites communis Trin., Polygonum lapathifolium L., Polygonum hydropiper L. and Zizania latifolia 

(Griseb.) Stapf

Cd, Pb and Zn Liu et al., [110]

8 Dianthus chinensis, Rumex crispus, Rumex K-1, Rumex acetosa DSL, Rumex acetosa JQW, Sedum alfredii, 
Vertiveria zizanioides and Viola baoshanensis Cd, Pb and Zn Zhuang et al., [111]

9

Artemisia lactiflora Wall, Aster subulatus Michx, Bauhinia variegate, Buddleia officinalis Maxim, Colocasia 
esculenta, Conyza canadensia (L.) Cronq., Debregeasia orientalis, Polygonum chinense, Polygonum 

rude,  Pteris ensiformis, Pteridium var, Pteris fauriei Hieron, Osyris wightiana, Ricinus communis L., Rumex 
hastatus, Smilax china L. and Tephrosia candida

Cu, Pb and Zn Xiaohai et al., [67]

10 Lobelia chinensis and Solanum nigrum Cd, Cu, Pb and Zn Peng et al., [112]

11 Helianthus annuus and Tithonia diversifolia Pb and Zn Adesodun et al., 
[68]

12

Amaranthus viridis L., Brachiaria reptans (L.) Gard. & Hubb.,

Cr, Cu, Co, Ni, Pb 
and Zn Malik et al., [113]

Cannabis sativa L., Cenchrus pennisetiformis Hochst. and Steud. ex Steud., Chenopodium

album L., Cynodon dactylon (L.) Pers., Cyprus rotundus L., Dactyloctenium aegyptium (L.)

P. Beauv., Elusine indica (L.) Gaerth., Ipomoea hederacea Jacq., Malvastrum
coromandelianum (Linn.) Garcke., Parthenium hysterophoirus L., Partulaca oleracea L., Ricinus communis L., 

Solanum nigrum L., and Xanthium stromarium L.

13
Beta vulgaris var. canditiva L., Brassica oleracea var. capitata L., Cucurbita pepo L. convar. giromontiana 
Greb., Cichorium intybus var. foliosum Hegi, Hordeum vulgare L., Medicago sativa L., Pastinaca sativa L., 

Phaseolus vulgaris L., and Zea mays L. convar. saccharata Koern.
Cd, Pb and Zn Poniedziałek et al., 

[114]

14
Brassica campestries, Croton bonplandianum, Datura stramonium, Dolichos lablab, Lycopersicum 

esculentum, Parthenium hysterophorus, Ricinus communi, Solanum nigrum, Solanum xanthocarpum, Triticum 
aestivum and Typha spp (weed)

Cd, Cr, Cu, Fe, Mn, Ni, 
Pb and Zn Singh et al., [115]

15 Solanum nigrum L. Cd Ji et al., [70]

16 Argemone mexicana, Cassia italic, Calotropis procera, Citrullus colocynthis, Cyperus laevigatus, Phragmite 
australis, and Rhazya stricta

Cd, Cr, Co, Cu, Fe, Pb, 
Ni and Zn Badr et al., [116]

17 Arrhenatherum album, Corrigiola telephiifolia, Cynosorus echinatus, Digitalis thapsi, Holcus mollis, Jasione 
montana, Plantago lanceolata, Rumex acetosella, Thymus zygis, and Trisetum ovatum

Cd, Cr, Cu, Ni, Pb 
and Zn

García-Salgado et 
al., [117]

18 Alternanthera Philoxeroides, Eichhornia crassipes (Mart.) and Pistia stratiotes L. Cu, Fe, Mg, Mn and Zn Hua et al., [71]

19 Medicago sativa Fe, Al, Ni, Zn, Cr,  Co, 
Cu and Pb

Al-Rashdi and 
Sulaiman, [118]

20 Sargassum hemiphyllum and Sargassum henslowianum Cd, Cr, Cu, Pb and Zn Yu et al., [119]

21 Plantago major L.
Al, Cd, Co, Cr, Cu, 

Fe, Mn, Ni, Pb, Sr, V 
and Zn

Galal and Shehata, 
[72]

22 Trifolium respinatum L. Ni Rad and Ghasemi 
et al., [120]

23 Trifolium alexandrinum Cr, Cu, Cd, Co and Pb Bhatti et al., [74] 
2016

24 Pennisetum sinese Roxb As, Cd, Cr, Cu, Mn, Pb 
and Zn Ma et al., [73]

Table 2: Various studies conducted on metal accumulation and phytoremediation potential of plants.
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1. Earthworms require neutral pH, mesophilic temperature 
and maintenance of 60-70% moisture level.

2. Vermicomposting unit is more expensive to set up than 
compost piles.

3. Earthworms should be protected from direct light. Shade 
is required for maintaining moisture temperature and faster rate of 
degradation.

4. Worms needs to be separated from vermicompost and 
do require some attention and proper care (Protection from other 
predators).

Heavy Metal Contamination of Soil
With the advent of industrialization life has certainly become 

easy and human living conditions have improved vastly. But it has 
also brought with it the menace of environmental pollution which 
has become a severe cause of concern and existential threat for 
life on earth. Among different forms of pollution, soil heavy metal 
contamination is most dangerous because it affects the sources of 
food and thus poses severe risk to life on earth.

Heavy metals are the metals having atomic mass greater than 20 
and are transition metals, metalloids, actinides and lanthanides [58]. 
Heavy metals in biological processes are classified into two classes: 
Essential heavy metals and Non-essential heavy metals. Those heavy 
metals which are required by organisms for their physiological 
processes are essential metals such as Copper (Cu), Cobalt (Co), 
Iron (Fe) etc. Non-essential metals are not required by organisms 
or sometimes are toxic even in small amounts such as Arsenic (As), 
Cadmium (Cd), Chromium (Cr), Lead (Pb) etc. [19]. The essential 
elements above maximum permissible limits can pose severe risks 
to organisms. The main concern regarding the heavy metals is their 
long term persistence in environment, such as 150 – 5000 years for 
Pb, 18 years for Cd etc. [59-61]. Considering such long persistence 
and toxic effects of heavy metals, their management and removal 

from soil becomes mandatory. There are several physical and 
chemical techniques available for remediation of heavy metals such 
as electrophoresis, soil washing, vitrification, pneumatic fracturing, 
chemical reduction etc. [62]. But these techniques have “pump and 
trial” and “dig and dump” approach. Also these techniques have very 
high cost, require huge setup, disturb the native soil micro flora and 
even generate secondary pollutants. Therefore, there is an urgent 
need for a cost effective, eco friendly and sustainable technique which 
can solve the problem of heavy metal contamination of soil. 

In recent times, “phytoremediation” has emerged as a very 
effective tool for decontamination of heavy metal polluted soils.

Phytoremediation
Phytoremediation is a technique that involves growing heavy 

metal tolerant plants having metal accumulating potential to clean the 
contaminated site. These plants can absorb, accumulate and detoxify 
pollutants from the site through their metabolic processes. Many 
studies have been conducted throughout the world on accumulation 
and phytoremediation of heavy metals from soil [63-76,107-120] 
(Table 2). 

Different types of phytoremediation processes (Figure 1) are 
discussed here.

Phytostabilization
In this process plants block the mobility and bioavailability of 

heavy metals in soil by converting the toxic metals to less toxic forms, 
thus stabilizing these metals in soils [75]. In this way metals are locked 
up in soil and do not pollute the groundwater, food chain, wind etc. 
[76]. Significant amounts of heavy metals can be stored at root level, 
especially in polyannual plant species, which contributes to long term 
stabilization of heavy metals [77]. The concept of phytostabalization 
lies in the variation in toxicity of different metal species. For example, 
Cr (VI) is highly toxic and readily bioavailable in comparison to Cr 
(III) [78]. But by excreting special redox enzymes in rhizosphere 

Figure 1: Various types of Phytoremediation.
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plants efficiently converts Cr (VI) to Cr (III) thus reducing its mobility 
and toxicity [79]. But phytostabilization is not an ultimate solution 
because the heavy metals will remain in soil can get converted back to 
their toxic form with changing conditions.

Phytodegradation (Phytotransformation) 
In phytodegradation plants degrade the organic pollutants in 

soil by enzymatic activity in rhizosphere [80]. Plants release enzymes 
like dehalogenase, nitroreductase, peroxidase, laccase and nitrilase to 
degrade organic pollutants [62, 81].

Phytovolatilization
It is a technique in which plants absorb pollutants from soil 

and converts them to their volatile form, which is released into the 
atmosphere. It is specifically used for organic contaminants and 
metals like Mercury (Hg). However it is a controversial technique 
since it removes metal from soil but releases it into atmosphere from 
where it can be redeposited into soil [19]. 

Phytofiltration
Phytofiltration is a process where plants are used to remove 

pollutants especially heavy metals from aqueous environments such 
as surface waters, waste water, nutrient recycling systems [82,83]. 
The ideal plants for phytofiltration should have extensive root 
biomass and root surface area, which should be able to accumulate 
and tolerate high levels of pollutants and have minimum handling 
requirements [84]. Various researchers have documented the metal 
uptake capabilities of aquatic plants, such as Water hyacinth, Water 
lettuce and Siligator alternenthera [85-87].

Phytoextraction
Among all the techniques of phytoremediation, phytoextraction is 

most efficient and useful technique for removal of heavy metals from 
soil [88]. Phytoextraction is the main technique of phytoremediation 
from commercial point of view also. This technique involves heavy 

metal uptake from contaminated soils in huge amounts and their 
translocation to aboveground aerial parts of plants [58]. These aerial 
parts sometimes accumulate higher concentration of pollutants than 
the soil and thus are highly desirable. This contaminated aerial biomass 
can be used for incineration purposes, thus fulfilling the much needed 
energy requirements. The ashes and remains after incineration can 
be dumped, included in construction materials or subjected to metal 
extraction [89]. The most important characteristics required for 
phytoextraction of metals by plants are shoot metal content and shoot 
biomass [90]. In order to quantify the phytoextraction capability of a 
plant two factors are calculated:

a) Bioconcentration Factor (BCF): It is expressed as ratio of 
heavy metal content in harvestable plant tissues to soil [91]

BCF = Charvested tissue/Csoil

where Charvested tissue is the metal concentration in harvested 
tissue and Csoil is the metal concentration in soil.

b) Translocation Factor (TF): It is a ratio of heavy metal contents 
in shoots to roots [92] 

TF = Cshoot/Croot

Where Cshoot and Croot are metal concentration in shoots and 
roots, respectively

Both BCF and TF are required to assess the phytoextraction 
potential of a plant. Plants having both BCF and TF greater than 1 are 
excellent for phytoextraction; plants having BCF >1 and TF <1 are 
suitable for phytostabalisation [65].

Hyperaccumulators 
Hyperaccumulators are the plants which have unusual capacity 

of accumulating and tolerating very high content of heavy metals. 
This concept was firstly given by Brooks et al [93]. To explain the 
plants which can accumulate >1000 mg/kg of Ni while growing 
in their natural habitat. In 1989, Bakers and Brooks gave criteria 

S.No. Metals Hyperaccumulator plant species

1 As Pteris vittata L., Piricum sativum L., Pteris biaurita, Pteris cretica, Pteris quadriaurita and Pteris ryukyuensis

2 B Gypophila sphaerocephala Fenzel

3 Cd Azolla pinnata, Eleocharis acicularis, Lemna minor L., Oryza sativa L., Rorippa globosa, Solanum photeinocarpum, Thlaspi caerulescens, 
Thlaspi caerulescens J. & C. Presl. and Vettiveria zizanioides L.,

4 Cr Brassica juncea L.,  Pteris vittata L. and Vallisneria americana

5 Co Berkheya coddii Roessler and Haumaniastrum robertii (Robyns) P .A. Duvign. & Plancke

6 Cu Brassica juncea (L.) Czern., Eleocharis acicularis, Elsholtzia splendens Nakai ex Maekawa, Festuca rubra L., Lemna minor L., and Vallisneria 
americana Michx.

7 Pb
Alyssum wulfenienum Bernh., Arrhenatherum elatius (L.) Beauv., Chenopodium album L., Cepaefolium (Wulfen) Rouy & Fouc, Euphorbia 

cheiradenia, Festuca ovina L., Hemidesmus indicus L., Thlaspi rotundifolium (L.) Gaudin ssp. Thlaspi caerulescens J. & C. Presl., and 
Vetiveria zizanioides L.

8 Mn Agrostis castellana Boiss. & Reuter, Phytolacca americana L., and Schima superb

9 Hg Marrubium vulgare L. and Pistia stratiotes L.

10 Ni
Alyssum bertolonii, Alyssum caricum, Alyssum corsicum, Alyssum heldreichii, Alyssum markgrafii, Alyssum murale, Alyssum pterocarpum, 
Alyssum serpyllifolium, Alyssum lesbiacum (Candargy) Rech. f., Agropyron elongatum (Host.)P. Beauv., Berkheya coddii, Isatis pinnatiloba, 

Lemna minor L. and Thlaspi spp.
11 Se Brassica rapa L., Brassica spp (Wild type) and Lemna minor L.

12 U Chenopodium amaranticolor H.J.Coste & Reyn and Lolium perenne L.

13 Zn Brassica juncea L., Cynodon dactylon (L.) Pers., Cardaminopsis spp., Eleocharis acicularis, and Thlaspi spp.

Table 3: List of hyperaccumulator species.

Sources: Jabeen et al., [62]; Vamerali et al., [76]; Ali et al., [19].
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for hyperaccumulation, according to which plants capable of 
accumulating >100 mg/kg of Cd, 1000 mg/kg Ni, Cu, Co and Pb and 
10,000 mg/kg of Zn and Mn in their shoots are hyperaccumulators. A 
second criterion which can be used to identify hyperaccumulators is 
based on BCF and TF. Plants having both BCF and TF values >1 can be 
considered for hyperaccumulation [65]. This criterion is highly useful 
in areas having low heavy metal contents. Throughout the world 
400-500 plant species belonging to families Brassicaceae, Asteraceae, 
Caryophyllaceae, Fabaceae, Cyperaceae etc. have been identified as 
hyperaccumulators [94]. Plants like Thlaspi caerulescens, Alyssum 
bertolonii, Arabidopsis halleri etc. are known hyperaccumulators of 
Cd, Co, Ni, Pb, Zn etc. Table 3 represents some of the most prominent 
hyperaccumulator plants. Usually the metal uptake in plants depends 
on metal bioavailability to plants. But hyperaccumulation of metals 
by plants is achieved by over expression of transport systems required 
for enhanced sequestration, tissue-specific expressions of proteins 
and high metal chelator concentration in soil [95]. 

The heavy metals once up taken by roots is either stored in 
roots or translocated to the shoots [62]. The heavy metal tolerance 
in plant tissues is governed by inter-related network of physiological 
and molecular mechanisms which includes processes such as metal 
exclusion, vacuolar compartmentalization, phytochelatin production, 
metallothioneins secretion for metal chelation etc [96]. 

Although the natural metal absorption by plants is always 
preferable, but it has some hurdles such as significant reduction of 
plant biomass while metal accumulation and inability of natural 
mechanism to absorb insoluble fraction of metals in soil. Therefore, 
to overcome these drawbacks different chelators such as EDTA, citric 
acid, EDDS etc. are used, which increases the metal solubility so that 
leaching of metals can occur [97]. But some of these metal chelators 
are non-biodegradable and can pollute the groundwater and soil.

Use of Metal Accumulating Plants
The plants that are used for phytoremediation can be used for 

several purposes such as construction, incineration and Phytomining. 
Phytomining is a process of extracting metals from hyperaccumulator 
plants [19, 98]. In this process plant biomass which has accumulated 
heavy metals is first incinerated and the metals can be extracted from 
ashes which are considered as bio-ore. The incineration process can 
provide energy for vital functions.

Advantages of Phytoremediation
The concept of phytoremediation was first given by Chaney [99] 

and today this technique has gained acceptance worldwide. It is a 
green and eco approach which overall improves the environment. 
No secondary pollutants are generated in phytoremediation as plants 
have highly efficient systems. This process is highly cost effective. For 
example, Salt et al [100]. suggested that in order to clean up one acre 
of soil (depth 50 cm) soil excavation USD 4,000,000 was required, 
whereas phytoremediation only required USD 60,000 – 1,000,000. 
Plants having high biomass and fast growth such as Jatropha, grasses, 
willow etc. can be further used for economic purposes such as 
construction, incineration etc. [101]. Therefore, phytoremediation is 
a durable and effective method for soil cleanup.

Limitations of Phytoremediation
Although phytoremediation is a very sustainable and 

advantageous technology for decontamination of soil, there are certain 
limitations to it also. First of all, this technology is highly dependent 
on environmental conditions [58]. Plants which are considered 
hyperaccumulators may only grow in certain environmental 
conditions and certain seasons only. In that case rigorous research 
is required to identify the plants which could accumulate metals in 
different types of conditions. Secondly, phytoremediation is a very 
slow process in comparison to other metal decontamination methods 
[19]. Thirdly, this technology is more suitable in case of high biomass 
producing plants and does not work very well with low biomass plants 
[102]. Another major setback is the root system of plants. Plants 
having extensive and spread root system (as in grasses) are more 
capable in extracting metals from soil. On the contrary plants having 
limited roots are not capable for metal uptake and accumulation [103, 
104]. There is also a high risk of food chain contamination, if proper 
care is not taken [105].

Future Prospects 
Phytoremediation is a reliable and environment friendly 

technique for cleaning up of soil. Although recently most of the 
research on phytoremediation is focused on laboratory based 
experiments, but more emphasis should be given to plants growing in 
wild and natural conditions which may provide better understanding 
of metal accumulating plants [70]. Extensive research should be 
focused on improving the metal uptake capabilities of weeds and 
other plants growing in wild by application of various genetic and 
biotechnological tools [106]. Lastly research must be focused on 
utilizing the plant material used for phytoremediation in profitable 
process in order to make this technique a commercial success [19]. 

Combined Application of Vermiremediation 
and Phytoremediation: Boost to Soil 
Management 

Although both Vermiremediation and Phytoremediation are 
distinct and very effective techniques for soil management, but if 
used in combination these techniques can bring marvelous results. 
In various contaminated environments (e.g. municipal dumpsites, 
industrially polluted lands, agro-chemically contaminated soils etc.) 
where soil is already affected by various pollutants, phytoremediation 
provides a sustainable solution for extracting out the pollutants 
and cleaning up the environment [19,62,76]. On the other hand 
vermiremediation provides an instrumental solution for managing 
the waste which can further contaminate that environment. 
Vermiremediation also generates very useful products such as 
vermicast and vermiwash [2,24]. These products further supplement 
phytoremediation by providing non-polluting nutrient source 
for plants used in phytoremediation. It will enhance the growth 
rate of plants and thus their phytoremediation potential. Also the 
vermicast and vermiwash are very efficient alternatives for polluting 
agrochemicals used in agriculture. Thus while decontaminating the 
agricultural soil using plants, vermicast and vermiwash can be used to 
enhance and maintain the soil nutrient pool. Thus, phenomenal results 
can be achieved by using vermiremediation and phytoremediation in 
tandem. 

Conclusions
The rising levels of pollutants (especially heavy metals) in soils 
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pose severe risks to future generations. To fulfill the requirements 
of increasing human population many adverse and environmentally 
dangerous methods are being used in every field. Undoubtedly, these 
unsustainable methods have increased human capacity to extract 
more from nature, but this has also led to deterioration of nature. 
Therefore, there is urgent need for environment friendly techniques 
such as Vermiremediation and Phytoremediation. Vermiremediaiton 
is a very efficient technique of waste management and reduction. The 
use of earthworms significantly reduces the toxic substances from 
the waste and decontaminates them. It also provides us manures and 
vermiwash which are very good alternatives of chemical fertilizers. 
The vermicompost generated during the process is a highly nutritious 
product for plants which increases the fertility of soil and also enhances 
microbial biomass in soil. On the other hand, phytoremediation 
provides us a green solution for already contaminated soils. The use of 
hyperaccumulating plants to extract metals from contaminated soils 
is the best eco-friendly remedy available. The use of plants for metal 
accumulation from soils is a highly efficient and cost effective system 
in comparison to other methods of decontamination. The metals 
stored in these plants can further be extracted out by phytomining 
processes. The efficiency of these metal accumulating plants can be 
increased using various genetic tools also. Thus, these two techniques 
i.e. vermiremediation and phytoremediation are best tools for waste 
management, soil fertility enhancement and decontamination of 
already contaminated sites. Further research must be carried out 
to improve and explore these techniques, as they hold the key to 
sustainable development. 
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