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Abstract

Evidence is presented for an estrogen disruptor related meta-epidemic with 
three overlapping waves. The first arose in the 1930s with animal intersexes, 
but few apparent human effects, and involved substances such as halogenated 
biphenyls and DDT. The second began around 1960 and continues today, with 
obvious ongoing human epidemics with diverse estrogenic effects, connections 
to hygiene hypothesis related immune disorders that explain epidemic timing, 
and health benefits related to strokes, heart attacks, and cognition where 
alternative medical explanations are insufficient. A single novel disruptor 
with dual estrogenic effects explains similar timing for adverse and beneficial 
changes. Dual effects could also account for the obesity paradox, where 
excess weight improves outcomes with other diseases, since the same agent 
that causes obesity could also ameliorate sequelae. Bisphenol A, a common 
constituent of plastics, is a likely candidate, with detectable levels in humans, 
including fetuses, estrogen disruption in vitro, and multiple links to epidemic 
findings. Production and use are historically consistent with early epidemic 
changes. Bisphenol S, a common replacement, is probably equally harmful. 
First and second waves exposures overlap, and a third wave involves chronic 
effects and interactions.

Keywords: Bisphenol A; Dementia; Epidemic; Estrogen; Estrogen disruptor; 
Hygiene hypothesis; Myocardial infarction; Obesity paradox; Stroke

pandemic waves.

The first wave arose with the estrogen disruptors 
Dichlorodiphenyltrichloroethane (DDT) and biphenyl derivatives 
[3], effects on animal reproduction in the 1930s and 1940s [6], plus 
subtler human issues [7,8]. 

The second wave, which defines the current meta-epidemic, 
began around 1960 with prominent human changes commonly 
linked to estrogen effects. Evidence will be presented a role for 
estrogen disruptors in two other changes occurring at the same time: 
Hygiene hypothesis related immune findings, and a series of health 
benefits, with reductions in strokes, heart attacks and cognitive issues 
unexplained by medical advances. First and second wave exposures 
and effects overlap, with ongoing animal and human reproductive 
issues even after limitations on first wave pollutants.

Simultaneous multiple issues with related mechanisms suggest 
a single cause, with bisphenol A, an estrogen disruptor common in 
plastics, as a likely second wave candidate [5].

The third wave involves evolving chronic effects and interactions, 
as well as additional findings related to a changing environment. 

General Issues- Disruptors and Epidemics
Besides the immune effects and benefits noted above, a consensus 

Introduction
We are now facing a confusing array of epidemics: “Over the past 

40 years we have seen a 57% increase in prostate cancer, 40% in breast 
cancer, 85% increase in hypospadias (penile defects), and a 50% 
reduction in sperm count. In addition, attention-deficit hyperactivity 
disorder has increased by 30%, autism spectrum disorders have 
doubled in the past 10 years, obesity has doubled in the past 30 years, 
and the number of US adults with diabetes has more than tripled 
since 1980. Clearly we must look to the environment as the primary 
cause of such increases and endocrine disruptors are likely to be a key 
factor in the surge of many diseases and disorders.” [1]. 

As Auric Goldfinger noted, “Once is happenstance. Twice 
is coincidence. Three times is enemy action” [2]. With multiple 
overlapping epidemics (Table 1), concerns should be obvious. 

Birnbaum implicated endocrine disruptors, which can mimic, 
block, or distort hormone effects through multiple mechanisms. 
One disruptor can affect several pathways, with different effects in 
different circumstances, even at seemingly negligible levels, and 
nonlinear dose response curves [1,3,4].

However, although other hormones may be involved, and 
ancillary factors can affect epidemic parameters [5], evidence 
supports a central role for estrogen disruption with three overlapping 
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statement noted three “strands of evidence that fuel concerns” [3]. 

•	 “The high incidence and the increasing trends of many 
endocrine-related disorders in humans.” 

•	 “Endocrine-related effects in wildlife populations.” This 
includes abnormal sexual differentiation, infertility, and reduced 
sperm production in aquatic animals [9], reduced semen quality and 
increased cryptorchidism in dogs from 1988-2004 in one facility [10] 
and, mirroring human changes, increasing body weight over several 
decades in domestic dogs and cats, research colony primates and 
rodents, as well as feral rodents [11]. 

•	 “Chemicals with endocrine disrupting properties linked to 
disease outcomes in laboratory studies,” with close to 800 known or 
suspected substances, with “the vast majority” in commerce untested.

Estrogen and Its Discontents
The four major types of estrogen have similar structures, and 

are all referred to as estrogen here. Women have relatively high 
levels, men low. Classic sexual effects [12] include low sperm counts, 
breast and prostate cancer, hypospadias, and intersexes [1,3,4], but 
other findings, such as obesity [13], certain birth defects [14,15] and 
immune related disorders [3] (Table 1) reflect less familiar properties. 

For exposures, estrogen disruptors are common pollutants with 
human absorption, and include DDT and endosulfan, often banned 
insecticides, zeranol, a growth promoter for cattle, weed killers such 
as atrazine, industrial chemicals like phthalate esters, PCBs and PBBs 
(poly-chlorinated and -brominated biphenyls), and by-products 
such as dioxin, plus multiple others with poorly (if at all) understood 
effects, distributions, bio-availability, derivatives, and interactions 
[3]. Many are high volume products: In 2011, roughly 12 billion lbs. 
of bisphenol A were produced [16], with detectable levels in humans 
[17], including fetuses [18]. 

The First Wave
With biphenyl derivatives in the environment in the 1930s, and 

DDT the next decade [6], human findings primarily reflected high 
dose local contamination; although laboratory studies show subtler 
changes [8], and DDT has long term, reproductive issues [7]. 

However, animals showed typical estrogen effects. For the 
common cricket frog in Illinois, intersexes began increasing around 
1930, peaked by 1960, and then decreased with DDT declines and early 
pollution limits. But, despite major environmental improvements 
after 1980, reproduction continued to be impaired [6]. 

Current ongoing decreases of insects and amphibians have 
multiple causes, including estrogen disruption related factors 
including first wave chemicals [19,9] still detectable in animals and 
humans, overlapping with later contaminants (below)

The Second Wave
“New” human epidemics with three likely estrogen disruptor links 

began around 1960: 1. Direct estrogen related effects; 2. Subsidiary 
contributions to allergies and infections; and, 3. Health benefits. 
Determining timing can be tricky, since early changes may be subtle, 
and latencies between exposures and effects may extend over decades, 
e.g., prenatal bisphenol A affects adult sperm counts [20]. 

For direct estrogen effects, gastroschisis, a prenatal vascular 
disruption of the abdominal wall, is a particularly helpful marker, 
since it is obvious at birth, hard to misdiagnose, and typically referred 
to tertiary surgical centers. Risks reflect maternal estrogen effects on 
coagulation. The disorder was first described in 1953 with 7 cases, and 
stayed rare until increases began in Great Britain, Scandinavia, and 
the U.S. in the early 1960s, correlating with early uses of bisphenol A 
[5]. Increases continue, with 4,713 cases in 15 American states from 
1995 to 2005 [21], while rates rose about 9% a year between 2009 and 
2013 in another study [22]!

Septo-optic dysplasia/optic nerve hypoplasia, another prenatal 
vascular disruption that variably affects the optic nerve, has a similar 
epidemiology, but diagnostic issues make it harder to track. Still, 
while exceedingly rare before 1960, prevalence quadrupled in Sweden 
between 1980 and 1999 [23], where it was the most common cause of 
infant blindness by 1997 [24]. Recently, Manitoba showed roughly 
800% increases from 1996 to 2015 [25].

Other disorders support similar timing. In particular, U.S. obesity, 
systematically studied since 1960, showed slow increases up to 1980 
followed by more rapid rises. Overall, from 1962-64 to 2007-08, age 
adjusted adult prevalence for obesity and extreme obesity from 13.4% 
to 34.3%, and 0.9% to 6.0%, respectively [26]; together, almost a 280% 
rise. There is considerable evidence for environmental “obesogens” 
[27] (including bisphenol A [28]) with estrogen effects and higher 
frequencies in industrialized countries [29]. 

While “estrogens play critical roles in a number of brain functions, 
including cognition, learning and memory, neurodevelopment, and 
adult neuroplasticity” [30], neuropsychiatric disorders are particularly 
difficult to evaluate, with often common findings, heterogeneity, and 
variable diagnostic criteria and ascertainment [31]. 

Still, increases here are apparent with autism spectrum disorders, 
which went from under 4/1000 in the late 1980s to 14.5/1000 in 2012, 
with major changes unlikely before 1960 [32]. For mechanisms, 
mTOR, a regulatory protein affecting neuronal pruning, may be 
implicated [33], with a role for estrogen stimulated mTOR-mediated 
protein synthesis [34] and bisphenol A specifically activates mTor 
[34].

Recently discovered links between autism and maternal DDT 
[35] are puzzling, since DDT levels have decreased since 1970 or so 
[6], while autism rates keep rising. Here, a combination of factors 
may be involved, with DDT in a subsidiary role as first and second 
wave exposures overlap. 

Similarly, estrogen disruptors can lower sperm counts [36]. 

Prostate cancer Breast cancer Uterine cancer

Hypospadias Septo-optic dysplasia Gastroschisis 

Food allergies Asthma Low sperm count 

Obesity Autism spectrum Attention-deficit disorder

Kawaski disease Reye syndrome Diabetes type 2

Childhood eczema Diabetes type 1 Bullous pemphigoid

Inflammatory bowel disease Celiac disease Myasthenia gravis 

Atrial fibrillation Animal intersexes -

Table 1: Epidemics from 1960 on. (Partial list. References in text).
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Despite some controversy [37], a meta-analysis starting with 1973 
showed ongoing declines [38] that may have started as early as the 
1940s [39]. One model indicated an abrupt change in the mid 1960s 
[40], suggesting a superimposed second wave effect.

However, despite such exceptions, all three types of findings- 
direct estrogen effects, subsidiary immune changes, and benefits- 
typically show similar likely beginnings after 1960.

Immunology 
Immune related issues (Table 2) began in the 1960s, ranging from 

rare disorders such as bullous pemphigoid [41] to common allergies 
like asthma [42] and even “new” infections: Kawasaki disease, an 
autoimmune vasculitis, probably an innate susceptibility triggered by 
an infection, first came to modern medical attention in Japan in 1961, 
with multiple cases reported in 1967 [43], although classic coronary 
artery aneurysms were seen as early as 1871 [44]. Similarly, Reye 
syndrome, an acute encephalopathy with fatty degeneration of the 
liver, was reported in 1929, but ongoing epidemics were first noted in 
1963 and 1964 [45]. A recent “new” epidemic of acute flaccid myelitis 
[46] is also worrisome.

A widely accepted hygiene hypothesis saw reduced early 
infections and antigen exposures with sanitary improvements 
sensitizing the immune system, increasing hay fever, asthma, and 
eczema after 1960 [42]. This now covers a broad range of allergic and 
autoimmune disorders [47] with similar timing, such as inflammatory 
bowel disease in North America [48], while others, such as bullous 
pemphigoid, appear to have begun later [41]. 

An earlier cited change for multiple sclerosis [49] is “highly 
questionable” [50]. Type 1 childhood diabetes is a slight exception, 
with increases starting in the 1950s [51]. Type 2 diabetes is harder 
to assess- early data is sparse and, until the mid-1950s, diagnosis was 
often through glycosuria, with poor sensitivity and specificity [52]. 

While autoimmune and allergic issues have been linked to 
endocrine disruptors [3], sensitization is more commonly cited, with 
evidence from animal and laboratory studies, epidemiology, and 
even therapeutic interventions [47] unaccounted for by disruptors. 
The two mechanisms are rarely considered together- a 10/15/2018 
PubMed search for “hygiene hypothesis” AND “endocrine disruptor” 
gave only one paper, which simply cited both as alternatives [53]. 
However, linking both together can explain important timing issues.

First, a lack of immune epidemics with earlier advamces: From 
1870 or so, diphtheria, pertussis and respiratory tuberculosis deaths 
steadily dropped [54], and U.S. infectious disease deaths fell 8.2% per 
year from 1937 to 1952, then 2.3% per year until 1980 [55]. Peak ages 
for paralytic polio, which reflect the initial infection, went from under 
a year in 1900 to 5 to 9 years in 1950, when roughly a third of all cases 
were over 15 years old [56]. Hookworm and tapeworm infections in 
the American South also radically decreased during the first half of 

the 20th century [57].

Second, ongoing immune epidemic increases despite diminishing 
room for hygienic improvements, e.g., in 1975, with vaccinations, 
mumps and measles were only about a tenth as frequent as ten years 
before [49]. 

In other words, hygiene related sensitization had few effects when 
there should have been many, and a surfeit when decreases would be 
expected.

However, timing is understandable if a second factor drove 
changes after 1960, and estrogen disruption is likely. Estrogen 
modifies maternal responses to an immunologically foreign 
conceptus [58,59], and receptors are present on most immune cells 
[60]. Specifics include: 

Regulatory T cells (Treg), suppressor CD4+ T cell subsets, and 
their products, especially IL-10 and TGF-β, that are central to self-
tolerance [4], with at least two estrogen suppression pathways [61], 
while estrogen can also stimulate Treg cell IL-10 and TGF- β1 
expression in vitro [62].

T helper cell subsets Th1 and Th2 interactions are important 
immune regulators, and estrogen suppresses TH1 and potentiates 
TH2 [63]. For Th17, more recently implicated, estrogen also has a 
role in maintenance and regulation [64].

Estrogen receptor α appears necessary for Toll-like receptor 
signaling modulation [65] as it recognizes “conserved pathogenic or 
microbial molecules” [66]. Similarly, dendritic cells, which process 
and present antigens to T cells, also respond to estrogen [67]. 

Finally, the gut microbial biome, another source of immune 
modification, interacts with sex hormones and gut flora related to 
immune responses in animal models [68].

Both pro- and anti- inflammatory estrogenic properties involve 
multiple interactions, so that “a uniform concept as to the action of 
estrogens cannot be found for all inflammatory diseases due to the 
enormous variable responses of immune and repair systems” [69]. 
Still, links are real, e.g., bisphenol A affects T cell subsets, B cell 
functions, dendritic cells and macrophages [70]. 

In short, estrogen disruptors can affect the immune system 
in varied ways, making sensitization interactions feasible, so that 
disruptor increases starting around 1960 would explain the observed 
temporal patterns.

Epidemics with Benefits
The final group of second wave estrogenic changes involves health 

benefits, which should not be surprising, since positive estrogen 
effects are apparent as different hormone levels in men and pre- and 
post-menopausal women affect cardiac, stroke, and cognitive issues. 

Premenopausal women have less cardiovascular disease than men, 
with postmenopausal increases and protection mediated through 
estrogen receptors [71]. Lower rates and later onsets of stroke and 
neurodegenerative diseases in women correlate with estrogen levels, 
and decrease or end with natural or surgical menopause. Estrogen 
receptors are involved “through a complex array of genomic and non-
genomic signaling, antioxidation and mitochondrial effects,” and 

Kawaski disease Reye syndrome Asthma

Food allergies Childhood eczema Inflammatory bowel disease

Bullous pemphigoid Celiac disease Myasthenia gravis 

Acute Flaccid Myelitis Diabetes type 1 -

Table 2: Increasing immune related disorders since 1960.
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aging related signaling issues affect ischemic injury [72], all supported 
by laboratory and animal studies [73]. Cognition also reflects estrogen 
levels [74], and surgical menopause increased cognitive decline and 
dementia rates, while early postmenopausal estrogen replacement is 
neuroprotective [75]. 

With these effects, estrogen disruptors are compatible with 
improvements in several areas:

Myocardial infarction (MI)
After steady rises in industrialized countries, incidence and 

severity progressively declined. Acute electrocardiogram based rates 
roughly halved from 1960 to 1999, with more than a 60% decline in 
coronary disease mortality. Changes varied geographically, but, for 
the U.S. As a whole, seem to have begun in the early 1960s [76]. 

Stroke
After some decline starting in 1925 [77], U.S. stroke mortality 

largely stabilized until moderate declines in the 1960s that greatly 
increased in the next two decades before becoming moderate again. 
By 2008, age-adjusted annual stroke death rates were less than a 
quarter of the 1931-1960 norm (40.6 vs. 175.0 per 100,000). From 
1987 to 2011, one cohort showed a 24% overall decline in first-time 
strokes in each of the last two decades, mostly in older than 65 year-
olds, and a 20% overall decrease per decade in stroke deaths, mostly 
in the younger group [78].

Neurocognition
Age related deterioration and dementia rates are lessening. In a 

French study of cognitively normal cohorts in their 70s and 80s, people 
in their 80s in 2008 performed as well as those in their 70s in 1991 
[79]. In over 70 year-olds from 1993 to 2002, cognitive impairment 
and dementia fell almost 30%, from 12.2% to 8.7%. Similarly, with a 
1978 baseline, new dementias in 60 year-olds declined by 22% in the 
late 1980s, 38% in the late 1990s, and 44% in the late 2000s.

Lending further support to beneficial estrogen links, while other 
immune disorders increased after 1960 [47], rheumatoid arthritis, 
where the hormone is protective [80], decreased [81]. 

Estrogen disruptor benefits and harm have different impacts on 
different groups, as with rising immune and psychological disorders 
in children versus cardiac, stroke, and cognitive improvements in 
adults. However, adult benefits are counterbalanced by increases in 
chronic diseases, especially obesity and diabetes (Appendix 1).

Medical explanations are a major alternative to estrogen disruptor 
benefits. However, there is considerable evidence that these are 
inadequate, and those additional factors, often second wave related, 
should actually have exaggerated negative outcomes. As a bit of a side 
issue, this is reviewed separately in Appendix 1.

A Paradox
Non-medical factors are also supported by the obesity paradox, 

where excess weight improves outcomes with specific diseases. So, 
adult diabetic mortality decreased as body mass index rose [82,83], 
and overweight and obese status lowered cardiovascular [82] and 
stroke mortality [84] and bettered long term survival [85]. This 
also occurred with heart failure [86], and for ischemic heart disease 
and hypertension, a Norwegian group found lower mortality with 

overweight patients, and even lowers with obesity [87]. This can be both 
long and short term, e.g., despite associated metabolic abnormalities 
with obesity, lower mortality after acute MIs persisted over a 7-year 
follow-up [88]. And obesity reduced hospital mortality with acute 
surgery for severe soft tissue infections [89]. There were also better 
outcomes with oral anticoagulant treatment for atrial fibrillation [90], 
even though obesity also supports progression to persistence, and 
associates with risk factors “such as hypertension, diabetes mellitus, 
sleep apnoea, dyslipidaemia, and increased pericardial fat with unique 
adipose tissue infiltration from the epicardial adiposity together 
with increased interstitial fibrosis contributing to atrial conduction 
abnormalities and increased AF propensity,” with an almost 30% rise 
in fibrillation per 5-unit body mass index increments [91]. 

Since estrogen disruptors can have multiple effects, the obesity 
paradox makes sense if the same exogenous obesogen [27] also 
protects against harmful sequelae. The interplay between beneficial 
and adverse effects may produce variable outcomes as parameters 
change, explaining J shaped curves with benefits from some excess 
weight followed by a worsening with higher degrees of obesity, as 
with early hip surgery complications [92].

With these findings, the obesity paradox is, in fact, part of a broader 
contradiction, as dramatic increases in risk factors are accompanied 
by marked improvements in related outcomes, including the study 
cited above where severity fell as risks per MI patient rose [93]. This 
also occurs without diseases: In a large study of adults 70 to 75 from 
1996 followed for up to 10 years, mortality risk with r overweight was 
13% less than for normal [94].

Still, this ultimately means a health deficit from rising disorders 
despite improvements. So, for diabetes, from 1990 to 2010, heart 
and diabetic crisis mortality declined by over 60%, strokes and leg 
amputations by about 50%, and end stage renal failure by about 30% 
[95]. 

However, diabetes prevalence went from 0.91% in 1960 to 2.97% 
for 1991-93 [51] and reached 13.6% in a 1999-2006 national survey, 
with 80.3% overweight (body mass index ≥ 25) and 49.1% obese. 
Normal weight diabetic prevalence was 8%, overweight 15%, and 
23%, 33%, and 43% for obesity classes 1, 2, and 3 [96], so most of 
the increased diabetes probably reflected an almost three-fold rise in 
obesity that more than outweighed (so to speak) any benefits. From 
1995-2010, the relative median increase in age-adjusted prevalence 
of diagnosed diabetes was 82.2%, plus about 40% undiagnosed; total 
2005-06 crude prevalence for ≥20 years of age was 12.9% [97].

A Third Wave
As the second wave persists, chronic issues arise. Ongoing 

pollution or body storage can cause prolonged exposures, e.g., even 
after being banned for decades, DDT persists in human tissues [98]. 
There also can be prenatal links to later issues, including excess weight 
and metabolic disturbances [99], and some findings, such as obesity, 
predispose to others. Extended exposures could weaken endocrine 
and immune responses, increasing vulnerabilities to other effects, 
including climate change related stress. 

And here, the diabetes/obesity data brings us to a third wave of 
estrogen disruptor issues, as chronic issues and long term interactions 
emerge. So, for a start, most, but not all, type 2 diabetes today is 
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weight associated (above), indicating weight independent and weight 
dependent risks related to estrogen disruption! The two effects are 
probably synergistic, rather than simply additive.

Another possibility is a 1999-2015 0.7% per year rise in uterine 
cancer [100], where most risk factors are estrogen related. Obesity 
increases estrogen exposures here [101], so that a direct estrogen 
disruption effect on cancer may be interacting with an excess body 
weight effect also associated with disruption.

One final long-term concern involves evidence that environmental 
chemicals can have epigenetic effects that are transferred across 
generations [102] 

Bisphenol A (BPA) Redux
Contemporaneous second wave estrogenic epidemics, hygiene 

hypothesis related disorders, and health benefits, suggest a new 
estrogen disruptor around 1960 with ongoing rises in exposures. 
And here, the evidence for bisphenol A as a likely candidate is worth 
reviewing.

Overall, a specific second wave cause should show estrogen 
disruptor effects, human uptake, and epidemic disorder links with 
initial exposures being around 1960, with subsequent increases. 
Geographically, the epidemiology of gastroschisis indicates initial 
exposures starting in the U.S. and North-east Europe and then 
spreading to other industrialized countries [5].

And here, BPA interacts with estrogen receptors α and β, 
estrogen-related receptor γ, membrane-bound estrogen receptor, 
G-protein-coupled estrogen receptor 1, as well as aryl hydrocarbon 
receptor, thyroid hormone receptor, and androgen receptor [17]. 

For links to epidemic issues, “animal and human research has 
associated BPA with many health problems including infertility, 
weight gain, behavioral changes, early-onset puberty, prostate and 
mammary gland cancers, cardiovascular effects, and diabetes” [103], 
plus connections with immune and autoimmune diseases [104] and 
cancer in general through different mechanisms [105,106]. 

Human BPA exposures and levels [17], include fetuses [18].

For early distribution, and later increases, “BPA was first made 
commercially in 1957 in the U.S. and 1958 in Europe to produce 
epoxy resin and polycarbonate plastic, both of which can directly or 
indirectly lead to human uptake of BPA. In Europe, polycarbonate 
was initially used in electrical insulators, but by 1963 it was “widely 
used for kitchenware and camping utensils,” with a “wide variety 
of products,” including food containers such as milk jugs, added 
the next year. I have not found documentation for the U.S., but a 
similar course is likely... Production rose steadily, making it probably 
the highest volume synthetic estrogen disruptor. World-wide, it 
reached 2.8 million metric tons in 2002, with an estimated 5.5 million 
metric tons (about 12 billion pounds) in 2011” Lubinsky [5]. (With 
permission of the author). Global consumption for 2015 was an 
estimated 7.7 million metric tons, with expectations of 10.6 million 
metric tons in 2022 [107].

Also supporting BPA effects are papillary thyroid cancer increases 
from 3.4 to 12.5 per 100,000 from 1975 to 2009 [108] consistent with 
BPA thyroid hormone disruptor effects. The authors also note that 

women have higher rates, and a far greater relative increase than men. 
Estrogen receptors are involved as well, with direct estrogenic BPA 
effects for this disorder [109], and possible “crosstalk” between the 
two [110].

Other BPA non-estrogen disruptors may also contribute 
elsewhere, e.g., aryl hydrocarbon issues [17] might supplement 
immune system effects [111].

Finally, other factors fail to fit the data [5]. 

A replacement for BPA, bisphenol S, is probably equally harmful 
[112].

What Has Posterity Done for Me?
With multiple changes and contributions, complex interactions, 

variable exposures and susceptibilities, and diagnostic and 
ascertainment issues, errors are inevitable. Also, with varying effects 
with different levels of exposures [113], findings may change over 
time. Still, the overall picture is clear, with ongoing changes related to 
estrogen disruption supported by multiple lines of evidence.

While individual scientists and groups such as the Endocrine 
Society have spoken out, comprehensive approaches are needed [3] 
as epidemics continue unabated. 

However, our environmental record is mixed. Successes, as with 
DDT, involved considerable opposition, and even personal attacks 
[114], while economic and political interests continue to fight against 
acknowledging threats, and denigrate science (and scientists), with 
the climate change “debate” as just one disheartening example as the 
present response seems to be.

Conclusions
•	 Estrogen disruptors are responsible for three overlapping 

waves of epidemics. 

•	 The first wave arose in the 1930s with animal intersexes, but 
few overt human effects, and involved known pollutants, especially 
PCBs and DDT. 

•	 The second wave began around 1960, and continues today, 
characterized by:

a) Obvious human epidemics with estrogenic effects in 
addition to “standard” feminization;

b) Connections to hygiene hypothesis related immune 
disorders, including “new” infectious disorders.

c) Health benefits with strokes, heart attacks, and cognition 
are unequally distributed in the population.

•	 There are insufficient standard medical explanations for 
benefits (Appendix 1).

•	 Origins are uncertain, but abrupt onsets suggest a single 
novel disruptor.

•	 A single agent with dual estrogenic effects explains similar 
adverse and beneficial changes timing.

•	 Dual effects also explain the obesity paradox, since the same 
agent that causes obesity could also ameliorate its consequences.
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•	 One likely candidate is bisphenol A, a common constituent 
of plastics. Bisphenol A:

a) Is produced in high volumes, and is a common pollutant.

b) Causes multiple endocrine disruptions in the laboratory;

c) Is epidemiologically linked to multiple epidemic findings, 
with both long and short term effects;

d) Is detectable in humans, including fetuses;

e) Early production and uses are consistent in time and space 
with initial epidemic changes.

•	 Current bisphenol a replacement involves bisphenol S, 
which is probably equally harmful.

•	 A third wave involves chronic second wave effects and 
interactions.

•	 Exposures from the first and second waves can overlap.

•	 Changing levels of exposures over time can alter findings 
and epidemiological parameters.

Appendix 1: Problematic Medical Benefits
Health improvements are typically explained medically. For 

cardiovascular benefits, “reductions in cigarette smoking, better 
control of serum lipid levels, more effective recognition and 
treatment of diabetes and hypertension, and more aggressive public 
health approaches to nutritional and other life style factors. The 
widespread use of aspirin or other medications has undoubtedly 
facilitated these trends as well” [115]. Or, for strokes, that “control of 
hypertension, hyperlipidemia, and tobacco, contributed most greatly 
to the mortality decline with a lesser but still substantial contribution 
of improved acute stroke care” [116]. Improvements in cognition and 
dementia are similarly justified [117, 118]. 

But there are problems here.

In two British populations, a few major risk factor changes 
covered roughly half of MI declines, with the rest unexplained. Other 
studies noted similar gaps [119,120], while less than half of stroke 
decreases reflected standard cardiovascular risk factors [121]. 

For interventions, recent studies show adverse instead of positive 
effects on morbidity and mortality from long term low dose aspirin 
[122-124], while lipid changes in one study were similar for adults 
taking and not taking lipid-lowering drugs [125].

Similarly, over 20 years, coronary heart disease and stroke deaths 
decreased by more than 50% in smokers and nonsmokers [126], even 
though the total relative risk of death for current smokers rose from 
1971 to 2006 [127]. For 1982 compared to 1959, “smokers consumed 
more cigarettes per day, on average; women in 1982 began smoking 
earlier, smoked longer, and reported inhaling cigarette smoke 
more deeply... The potential benefits of reduced tar... appear to be 
overwhelmed by adverse changes in smoking practices and perhaps 
by other unidentified factors. Although smoking cessation clearly 
reduces the risk of CHD (Coronary Heart Disease) and stroke, much 
of the temporal decline in CHD and stroke mortality from CPS-I 
to CPS-II appeared to reflect factors other than smoking cessation 

because similar reductions were seen among current cigarette 
smokers and lifelong never-smokers” [128].

Life-style changes are also questionable: Carbohydrate and 
absolute fat intake in U.S. adults rose from 1971 to 2000 [129]. In 2000, 
for ages 18 to 74 years, only 3% of people combined nonsmoking, 
healthy weight, adequate fruit and vegetable intake, and regular 
physical activity [130]. From 1994 to 2007, the last two showed little 
change, with a 4-6% healthy life style frequency varying by region 
[131]. 

Other findings seem implausible. In one population, as MIs 
decreased from 1999 to 2008, risk factors per MI patient rose: diabetes, 
peripheral arterial disease, and chronic lung disease increased, 
dyslipidemia went from 46% to 80%, and hypertension from 45% 
to 76%- understandable if, as interventions succeeded, patients 
with poor compliance, adverse socioeconomic factors, etc., made 
up a larger part of a now smaller at risk cohort. However, instead of 
increasing, severity fell as MIs with more severe objective ST-segment 
elevation dropped from 47.0% to 22.9% [93]. 

In fact, rising risk factors should have worsened outcomes across 
the board. For U.S. adults:

•	 Obesity increased from 1960 on (above), raising risks for 
cognitive decline and dementia [132], all cause mortality [133], type 
2 diabetes, dyslipidemia, metabolic syndrome [134], atrial fibrillation 
[91], stroke, heart disease, and other morbidities [135]. 

•	 Diabetes predisposes to cardiovascular disease, stroke, 
hypertension, dementia, cognitive decline, and other problems 
[136,137]. Prevalence rose from 0.91% in 1960 to 2.97% for 1991-93 
[51]. From 1995–2010, the relative median increase in age-adjusted 
diagnosed diabetes was 82.2%, plus about 40% undiagnosed; total 
2005–06 crude prevalence for ≥20 years of age was 12.9% [97], and 
reached 13.6% in a 1999–2006 national survey, with 80.3% overweight 
(body mass index ≥ 25) and 49.1% obese. Normal weight diabetic 
prevalence was 8%, then 15% for overweight, and 23%, 33%, and 43% 
for obesity classes 1, 2, and 3 [138], so most of the diabetes increase 
probably reflected a roughly three-fold rise in obesity from the 1960s 
on [26] that more than outweighed (so to speak) any benefits. 

•	 Prediabetes affected, an estimated 35% of U.S. adults 20 
years or older (50% for 65 years or older) by 2005-08 [138]. In one 
study, rates for healthy women went from 15.5% for 2001-02 to 
28.8% for 2009-10 [140]. In another, for ≥18 years, for 1999-2002 
to 2007-10, from 29.2% to 36.2% [141]. Cardiovascular risk factors- 
hypertension, cholesterol, triglycerides, and obesity- may increase up 
to 30 years here before diabetes is diagnosed [97], and hemoglobin 
A1c levels of 6.0% to <6.5% (the threshold for diagnosing diabetes) 
gave an 85% higher risk for coronary heart disease than 5.0% to <5.5% 
[142]. 

•	 Atrial fibrillation is associated with impaired cognition, 
dementia, chronic heart failure, mortality, and greater severity and 
a 5 fold increase in strokes [143]. Risks increase with age, and were 
<1% under 60 versus ≈10% in 80 to 84 year-olds in 2011 [144]. Age-
adjusted estimates for the 1960s, 1970s, and 1980s were 5%, 8%, and 
12% for men, and 4%, 6%, and 8% for women [145], plus an age and 
sex adjusted 12.6% increase over 21 years by 2000 [146]. With these 
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findings, a rough doubling from the 1960s through the 1980s should 
translate into at least an 8% rise in strokes.

•	 Low vitamin D is associated with autoimmunity, diabetes, 
cognitive dysfunction, dyslipidemia, hypertension, increased 
mortality [147], and progression from prediabetes to diabetes [148]. 
Cardiovascular effects are directly related [149,150] and, for dementia 
of all sorts, moderate deficiency gave a 53% increased risk, and severe, 
122% [151]. From 1988-94 to 2001-04, mean serum levels dropped 
from 30 to 24 ng/mL levels <10 rose from 2% to 6%, and adequate 
levels ≥ 30 fell from 45% to 23% [152]. A meta-analysis found a 15% 
rate of severe deficiency (<10 ng/mL) with each 10 ng/mL decline 
associated with a 16% rise in all-cause mortality risk [153].

Other rising risks have been suggested, such as dietary fructose 
[132,154], but just the five above should significantly counter any 
medical advantages.
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