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Abstract

Clinical management of arsenic poisoning has been a major concern 
especially in countries like Bangladesh., India., Taiwan., Chile, Hungary and 
Argentina. In recent past, therapeutic efficacy of chelating agents, vitamins, 
nutrients, antioxidants and hormones has been investigated in many laboratories. 
Whereas, arsenic can be chelated by several agents viz: British Anti Lewisite 
(BAL), unithiol (DMPS), succimer (DMSA), monoisoamyl  dimercaptosuccinic 
acid (MiADMSA), monocyclohexyl dimercaptosuccinic acid (MchDMSA), co-
administration of quercetin and MiADMSA and taurine and MiADMSA have 
been found to reduce arsenic burdeon more effectively than their individual 
treatments. There are convincing reports that non-enzymatic antioxidants i.e. 
ascorbic acid, alpha tocopherol, B carotene, N-acetyl cysteine, alpha lipoic acid, 
curcumin, GSH and selenium offer protection against arseniasis by reducing 
oxidative stress. Melatonin, a product of pineal gland being a strong free radical 
scavenger possesses immense therapeutic importance against arseniasis. 
Thyroid hormones too influence arsenic toxicity. All these studies made in 
experimental animals have been briefly described in this review. However, 
cohorts made in human population are insignificant. Suitable clinical trials 
using these therapeutic agents individually or in combination may lead to the 
discovery of a “magic bullet” against arseniasis.
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Authorty [18], have declared it as a human carcinogen. Agency 
for Toxic Substance and Drug Registry (ATSDR), has registered it 
as number one substance in the Comprehensive Environmental 
Response Compensation and Liability Act (CERCLA) priority list of 
hazardous substances [19].

In environment, arsenic exists in inorganic as well as organic 
forms and also in different valence or oxidation states. Elemental 
arsenic has a valence state (o). Arsine and arsenides have a valence 
state (III). All arsenic compounds may be classified into inorganic, 
organic and gaseous forms. The most common inorganic trivalent 
arsenic compounds are arsenic trioxide, sodium arsenite and arsenic 
trichloride. Pentavalent compounds are arsenic pentoxide, arsenic 
acid, arsenate (e.g. lead arsenate, calcium arsenate). Common organic 
arsenic compounds are arsanilic acid, monomethylarsonic acid, 
dimethylarsinic acid (cacodylic acid) and arsenobetaine [20].

Absorption of arsenic may occur through inhalation, ingestion 
and contact by skin. After absorption, arsenic is transported by the 
blood to other parts of the body. Two basic processes are involved 
in its biotransformation, (i) oxidation and reduction reactions that 
intervert As III and As V, and (ii) methylation reactions which convert 
arsenite to Monomethyarsanalic Acid (MMA) and Dimethylarsenilic 
Acid (DMA). 

Research on the mechanism of arsenic toxicity has been ongoing 
for many years, yet precise mode of action (MOA) for many disease 
end points after exposure to arsenic are not fully understood. 
Trivalent arsenicals have been found to be more potent toxicants than 

Introduction
Arsenic is present in Earth’s crust at an average concentration of 

5 parts per million (ppm). It ranks 54th in abundance in Earth’s crust. 
Arsenic is a component of 245 minerals associated most frequently 
with other minerals such as copper, gold, lead and zinc in sulfidic ores. 
The main ores of arsenic are arsenopyrites (FeAsS), realagar (As2S2), 
orpiment (As2S3) and arsenolyte (As2O3). Arsenic is usually not 
mined but is recovered as a by-product from the smelting of copper, 
lead, zinc and other ores. Natural processes such as weathering, 
biological activity and volcanic eruption disturb its geochemical cycle 
and it is released into the environment. Anthropogenic activities such 
as combustion of fossil fuels, mining ore smelting and well drilling 
also mobilize and introduce arsenic into the environment.

Although, most typical environmental exposures to arsenic do 
not pose a health risk, several countries are known to suffer the risk 
of arsenic poisoning. Over 140 million people worldwide consume 
arsenic contaminated drinking water that exceeds the World Health 
Organization (WHO) limit of 10ppb [1].  Highest concentration of 
arsenic are known to occur in the ground water of Bangladesh and 
West Bengal in India [2]. Human population of other countries 
that are suffering from arsenic poisoning include Taiwan [3-5], 
Argentina [6,7], Chile [8,9], India [10,11], Bangladesh [12,13], China 
[14] and inner Mongolia [15]. WHO declared arsenic poisoning as 
a global emergency. A strong association between exposure to high 
concentration of arsenic and prevalence of cancer of skin, lung and 
bladder has also been established [16]. Agencies like International 
Agency for Research on Cancer [17] and European Food Safety 
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pentavalent arsenicals. Several review articles have been published 
on its MOA [21-23]. These reviews indicate involvement of several 
mechanisms viz: altered DNA methylation, signal transduction, 
cell proliferation, Reactive Oxygen Species (ROS), oxidative stress 
and genotoxicity in its toxicity. Several of these mechanisms may be 
interdependent. Based on its MOA, attempts have been made to find 
out suitable drugs/antidotes against arseniasis.

Arsenic as a Medicine
Documented evidence showing that arsenic was used as a 

therapeutic agent dates back to 2000 BCE [33,34].  Ancient pioneering 
physicians e.g. Aristotle and Paracelsus reportedly used arsenic as 
medicine [35,36]. Hippocrates, the Father of Medicine is thought to 
have used arsenic paste to treat ulcers and abscesses [37,38]. 

Fowler’s solution, that was discovered in 1786, is a 1% solution of 
potassium arsenite, used in the treatment of malaria, syphilis, asthma, 
cholera, eczema and psoriasis [39,40]. Paul Ehrlich discovered a new 
arsenic based drug called “salvarsan” which later became known as 
“magic bullet” for treating syphilis. It was used till penicillin became 
more popular in 1940s [38,41].

Pharmacological texts from 1880s described the use of arsenical 
pastes for the treatment of skin and breast cancer. It was found that 
Fowler’s solution could be effective in lowering the white blood cell 
count in leukemia patients [42]. Later on the use of Fowler’s solution 
declined due to its overt toxicity. More detailed understanding on the 
mechanisms of action of arsenic helped arsenic trioxide to emerge as 
an effective drug against Acute Promyelocytic Leukemia (APL) [43]. 
The treatment of other types of cancers with arsenic trioxide is still a 
matter of investigation [44,45]. 

Amelioration of Arsenic Toxicity
Sincere efforts have been made to develop methods to both enhance 

the efficacy of arsenic as well as to ameliorate the toxicity profile 
associated with different forms of arsenic.  In recent past therapeutic 
efficacy of chelating agents, vitamins, nutrients, antioxidants and 
hormones has been investigated in many laboratories. Important 
developments are reviewed in the following paragraphs.

Chelation of Arsenic
Several metal binding substances function by chelation. A 

substance which binds metals is called a ligand. When a metal is 
gripped in a ligand between any two of the elements i.e. N, O, or S, a 
chelate ring is formed. This process is known as chelation. The term 
was coined by Morgan and Drew [46] and is derived from the Greek 
word khele meaning crab’s claw.

The first experimental use of a chelator against metal poisoning 
was made by Kety and Letonoff [41] to treat lead poisoning with 
sodium citrate. However, traditional chelating agents include calcium 
disodium ethylamine diamine tetra acetic acid (CaNa2EDTA), 
British Anti Lewisite (BAL), and meso-2,3-dimercapto succinic acid 
(DMSA). Recently mono and diesters of DMSA have been developed 
and tried against experimental heavy metal poisoning. Other 
chelating agents with established clinical use include D-penicillamine 
and desferrioxamine [48]. 

The therapeutic efficacy of chelation depends upon metal chelator 
and organism related factors e.g. ionic diameter, ring size and 

deformability, hardness/softness of electron donors and acceptors, 
route of administration, bioavailability, metabolism, intra/extra 
cellular compartmentalization and excretion. Hydrophilic chelating 
agents promote renal excretion of the metal while lipophilic chelators 
may deplete intracellular stores and may redistribute toxic metals. In 
long term therapy, side effects of the administered chelating agent 
may be limiting. The metal selectivity of chelator is important because 
of the risk of depletion of stores of essential metals.

Chelation therapy to prevent metal toxicity perhaps started 70 
years ago with the development of British Anti Lewisite (BAL) or 
dimercaprol in Britain [49]. Later on DMPS (unithiol) and DMSA ( 
succimer) were developed in Soviet Union and China in late 1950s. 
These three agents have been extensively used to treat arsenic and 
mercury intoxication [50,51]. BAL possesses marked side effects 
and low safety ratio, however, DMPS and DMSA are non toxic. A 
comparative study on their efficacy in the liver and kidney of mice 
treated with arsenic by Tripathi and Flora [52] confirmed that DMSA 
was more effective than DMPS. Muckter et al., [53] suggested that 
BAL should be replaced with 2,3-Dimercaptopropane-Sulphonate 
Sodium (DMPS) and meso-2,3-Dimercaptosuccinic Acid (DMSA) 
due to their low toxicity. However, in case of severe poisoning 
by organic arsenicals, BAL remains to be a preferred antidote for 
arsenic. Another chelate-Monoisoamyl Dimercaptosuccinic Acid 
(MiADMSA) has also been found to elicit significant protection 
against arsenic induced oxidative stress and apoptotic cell death in 
human keritinocytes [54]. A concept of using chelation therapy with 
essential elements like calcium and zinc has also been suggested. 
Kadeyala et al., [55] reported that MiADMSA combined with calcium 
and zinc could be more effective in reducing arsenic toxicity. Recently 
Anderson and Aaseth [56] reviewed the shortcomings of chelation 
therapy. Chelation procedures should alleviate and not aggravate the 
clinical status of poisoned patients.

There are a few reports where combination therapy has been 
used against arseniasis. Co-administration of DMSA and MiADMSA 
at a concentration of 0.15mM/kg was found effective in reducing 
arsenic load from blood and soft tissues and also in reducing 
oxidative stress. DNA damage caused by As was also repaired [57].  
Subsequent study showed that combination of DMSA with long 
chain carbon analogues like MiADMSA and monocyclohexyl DMSA 
(MchDMSA) significantly reduced arsenic burdeon and reversed 
altered biochemical variables indicative of oxidative stress and 
apoptosis [58]. Thus further attempts to use suitable combination(s) 
of chelating agents and essential element may be made to prevent 
arsenic toxicity. 

Arsenic is known to cause reproductive toxicity also. Available 
literature shows that it could be prevented by DMSA and DMPS [59]. 
Flora and Mehta [60] has reported that MiADMSA protects against 
arsenic induced developmental toxicity in stem cell derived embryoid 
bodies.

Studies on the protective role of nanoparticles of chelating agents 
against arseniasis are also being undertaken in a few laboratories. 
Yadav et.al., [61] showed better efficacy of nano-MiADMSA (50nm) 
than bulk MiADMSA in reducing oxidative stress and efficient 
removal of arsenic from blood and tissues of sodium arsenite  treated 
Swiss albino mice. Histopathological observations and urinary 
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level of 8-OHdG also proved better therapeutic efficacy of nano- 
MiADMSA than bulk MiADMSA. Another report on the application 
of nanotechnology in the prevention of arsenic poisoning was 
published by Ghosh et al., [62] who nanoencapsulated quercetin and 
DMSA and tested against chronic arsenic toxicity in a rat model. 
Their combined treatment displayed a synergistic effect. It decreased 
arsenic burdeon, normalized mitochondrial function and reduced the 
formation of reactive oxygen species in liver. It was a novel approach 
of therapeutic intervention combining hydrophilic and hydrophobic 
drugs into a single delivery system. Earlier, Mishra and Flora [58] 
have also shown that combined administration of quercetin with 
MiADMSA decreased arsenic concentration in blood and soft tissues.  
Similar study was made with taurine and MiADMSA in rats treated 
with sodium arsenite for 24 hours.  Co-administration of a higher 
dose of taurine (100mg/kg) and MiADMSA improved antioxidant 
status of liver and kidney and reduced arsenic burdeon compared to 
their individual treatment [63].

Protection by Antioxidants
It has been established now that arsenic toxicity is manifested 

through oxidative stress. Therefore, antioxidants have been at the 
forefront of chemotherapeutic intervention against arseniasis. 
Nonenzymatic antioxidants function as free radical scavengers and 
include ascorbic acid (vitamin C), alpha tocopherol (vitamin E), 
B-carotene, N-acetyl cysteine, alpha lipoic acid and selenium.  

Ascorbic acid: L-ascorbic acid (C6H8O6) is the trivial name of 
vitamin C that has been accepted by IUPAC-IUB commission on 
biological nomenclature [64]. The systemic chemical designation is 
2-oxo-L threo-hexono-1,4 lactone-2,3-enediol. Vitamin C refers to 
compounds exhibiting full or partial biological activity of L-ascorbic 
acid. These include esters of ascorbic acid such as ascorbyl palmitate, 
6-deoxy-L-ascorbic acid and primary oxidized form of ascorbic acid, 
dehydroascorbic acid.

The concept that arsenical toxicity could be modified by nutrients 
was initially proposed in early 1930’s by Mayer and Sulzberger [65] 
who suggested that adequate concentration of ascorbic acid in the 
diet prevented or reduced arsenic induced occurrence of anaphylaxix. 
Subsequently, a number of researchers confirmed this hypothesis on 
ascorbic acid-arsenic interaction [66-69].

Several workers like Tanaka [70]; Tabacova et al., [71]; Mc 
Call and Frei [72]; and Odunuga et al., [73] reported on free 
radical scavenging role of L-ascorbate as a major mechanism of 
protection against arsenic poisoning. Vitamin C in combination with 
methionine also reduced toxicity of arsenic [74,75]. [76] concluded in 
their studies in rat that L-ascorbate plays a pivotal role in maintaining 
normal ovarian activities and brain monoamines in arsenic treated 
rats. Anti myeloma effect of ascorbic acid has also been observed by 
Bahlis et al., [77]. Improvement in microsomal function by ascorbic 
acid in arsenic treated rat has also been observed [78]. It was also 
concluded that ascorbate overcomes drug resistance in myeloma and 
significantly increases the anti myeloma effects of arsenic trioxide in 
animal models. 

A number of studies especially made in last decade attribute the 
protective effects of ascorbic acid to its antioxidative property. It was 
suggested that ascorbic acid forms first line of antioxidant defence 

[80,81]. Nandi and coworkers (2005) also observed that ascorbic acid 
reduces tissue burdeon of arsenic and reverses oxidative stress in rats. 
Studies made in our laboratory also suggested that it reduces oxidative 
stress [84]; improves mitochondrial function [83]; and reverses 
disturbances in the structure and function of liver and kidney of 
arsenic treated rats [84]  Not only liver and kidney, protective effects 
of ascorbic acid have been observed in testis [86] and neural function 
of rats [87]. Combined treatments with vitamin E and vitamin C have 
also displayed protection against arseniasis in rats [88,89].

These properties make ascorbic acid a suitable antidote for arsenic 
poisoning even in human subjects.

Vitamin E (a-tocopherol): Vitamin E is a family of lipophilic 
antioxidants, termed tocopherols that contain a chromanol nucleus 
and isoprenoid side chain [90]. Individual tocopherols differ by the 
position and number of methyl substituents on the aromatic ring. Of 
these, the principal tocopherols found in human and animal diets are 
y-tocopherol and a-tocopherol. a-tocopherol from natural sources 
(R.R.R. a-tocopherol is the most potent form of vitamin E. Peroxyl 
radicals analogously oxidize a-tocopherol to the tocopheroxyl radical, 
an unusually stable phenoxyl radical that does not propagate the 
radical chain [91]. Recognizing these kinetics, several studies have 
been made using a-tocopherol as antidote for several xenobiotics.

A population based study was conducted in Bangladesh using 
vitamin E and selenium to protect against nonmelanoma skin cancer 
caused by arsenic amongst 7000 adults [12]. Vitamin E together 
with vitamin C and zinc was found to ameliorate hematological 
effects of arsenic in rats during pregnancy and lactation [92]. Plasma 
a-tocopherol might modify the risk of inorganic arsenic related 
urothelial carcinoma [93]. A few reports indicated the protective 
effects of vitamin C and E against arsenic induced teratogenicity [89]. 
Effects of vitamin E together with other nutrients like selenium have 
also been found protective against co-carcinogenicity induced by 
arsenite and solar UVR [94].

An excellent review by Liebler [95] on the role of metabolism in 
the antioxidant function of vitamin E concluded that a-tocopherol is 
the principal chain breaking antioxidant in biological membranes. It 
prevents toxicant/carcinogen induced oxidative damage by trapping 
reactive oxygen radicals.

β- carotene: Very few workers have studied the amelioration 
of arsenic poisoning by B carotene. It is a lipophilic antioxidant. 
Its protection against many xenobiotics has been attributed to 
its role in the prevention of oxidative DNA damage. It can induce 
GSH synthesis. An association between as induced skin cancer and 
B -carotene was first reported by Hsuch [96] in arseniasis affected 
villages of Taiwan. Skin cancer patients had significantly lower serum 
levels of B-carotene than matched healthy controls. The same group 
of workers recorded a reverse dose-response relationship with arsenic 
related Ischemic Heart Disease (ISHD) [97]. Another study from west 
Bengal (India) by Chung et al., [93] showed that arsenic toxicity could 
be influenced by micronutrients in particular, selenium, methionine 
and B-carotene. In a recent study made by Das et al., [98], B -carotene 
displayed ameliorative effect against arsenic induced toxicity in Swiss 
albino mice. They also attributed this effect to its antioxidative and 
antigenotoxic properties. In future, attempts can be made to introduce 
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a combination therapy using B- carotene and chelating agents.

N-acetyl cysteine: N-Acetyl Cysteine (NAC), a synthetic 
aminothiol, possesses antioxidative and cytoprotective properties. 
L-cysteine is a precursor to the biological antioxidant glutathione.  
Hence, in principle, administration of NAC replinishes glutathione 
stores. Patrick [99] suggested mitigating role of NAC against arsenic 
and cadmium toxicity. In vitro and in vivo models have shown 
that NAC modulated cellular thiols for protection against reactive 
oxygen species [100]. In a recent study, da Silva [101] observed that 
co-administration of NAC and As2O3 in male mouse prevented 
the harmful effects of arsenic on male genital system. However, no 
protective effects were observed in the urinary bladder of rats treated 
with dimethylarsinic acid [102]. Reddy and coworkers [103] showed 
that treatment of arsenic exposed mice with NAC increased the 
weight of reproductive organs, reduced arsenic induced oxidative 
stress and impaired steroidogenesis  indicating the beneficial role of 
NAC.

Pre-treatment of NAC to arsenic treated mice abrogated 
apoptosis in liver, as determined through TUNEL test, caspase assay 
and histology [104]. It was hypothesized that since these processes 
are GSH dependent, supplementation of NAC would display 
beneficial effects.  Pal et al., [105] suggested that NAC prevented As 
induced hypoglycemia and glycogenetic effects.  As induced changes 
in glucose-6-phosphatase activity in liver and kidney both were 
counteracted.

Another approach adopted by a few workers was to use NAC 
with another suitable therapeutic agent. Combined therapy of NAC 
and DMSA was tried against oxidative stress and hepatic dysfunction 
induced by sodium arsenite in male rats.  Combined therapy was 
found to be superior than monotherapy in recovery of glutathione 
and structural changes [106]. Another group used NAC and zinc to 
combat As induced oxidative stress in male rats [107]. Concommitant 
administration of Zinc and NAC showed protection against delta 
amino levulinic acid dehydratase, oxidative stress and catalase activity 
in the liver of male rats. Combined therapy using NAC and suitable 
nutrient(s) or chelating agent(s) may be a good alternative to treat 
arsenicosis in humans.

Reduced glitathione(GSH): Arsenic and GSH relationship is as 
old as the discovery of this tripeptide (glutamyl cysteinyl glycine) by 
Hopkins and coworkers in 1922 [108]. There is a serene phrase coined 
by Kosower and Kosower [109],”Lest I forget thee glutathione”. This 
statement has now been replaced by “inevitable glutathione” by Rana 
et al., [110].  Cysteinyl moiety of GSH binds with trivalent arsenicals 
and thus offers protection against their toxicity. Investigations during 
1920s and 1930s on GSH-As interactions laid the groundwork for 
development of an antidote for lewisite (chlorovinyl dichloroarsine). 
BAL (2,3-dimercaptopropanol) was the product of this early 
development at national drug design [111].

Molecular mechanisms involved in As-GSH interaction are 
associated with reduction reactions that convert pentavalent arsenic 
to trivalent arsenic [112,113]. Trivalent arsenic is complexed by GSH, 
hence GSH dependent reduction and complexation are inextricably 
linked in cells. These complexes have been detected in diverse 
biological systems [114,115]. These complexes inhibit Glutathione 
Reductase (GR) [116]. Regeneration of GSH from GSSG due to 

inhibition of GR may affect the intracellular GSH: GSSG ratio. The 
resulting shift in cellular redox status may contribute to its toxicity/ 
carcinogenesis.

There are a few reports that suggest that dietary GSH can modulate 
arsenic toxicity.  Protective effects of GSH on sodium arsenite induced 
ovarian and uterine disorders in Wistar rats were observed by 
Chattopadhyay and Ghosh, [117]. Other compounds like resveratrol 
protect against As2O3 toxicity via cellular antioxidative pathway i.e. 
maintaining GSH homeostasis and suppressing apoptosis [118].

The formation of As-GSH complexes may also facilitate the efflux 
of arsenicals from cells.  New findings suggest that glutathione-S-
transferases especially glutathone transferase P1 (GSTP1) catalyzes 
the formation of As-GSH complexes which are preferred substrates 
for ATP binding cassette membrane transporters which mediate 
efflux from cells [119]. Nevertheless, there are no data concerning 
the kinetics of formation of As-GSH complexes in GSTP1 catalyzed 
reactions [120].  However, this information favours the use of GSH as 
an antidote for arsenicosis.

Curcumin: Curcumin (CUR) is the active ingredient derived from 
the rhizome of turmeric, Curcuma longa. CUR is a good antioxidant 
but with limited clinical applications due to its hydrophilic nature 
and limited bioavailability. It is a naturally occurring polyphenolic 
compound with wide range of therapeutic and pharmacological 
properties. Garcia-Nino and Pedraza Chaveri [121] showed that 
curcumin reduces hepatotoxicity induced by several elements viz: 
arsenic, cadmium, chromium, copper, lead and mercury. Metal 
conjugation and free radical scavenging activities of CUR make it a 
safe antidote. Dutta et al., [122] showed that metal conjugates of CUR 
derivatives enhance its antioxidative activities. It has been observed 
that CUR counteracted DNA damage caused by arsenic. It decreased 
lipid peroxidation and increased the activities of Phase-II enzymes 
viz: catalase, superoxide dismutase and glutathione peroxidase in 
arsenic treated human lymphocytes [123]. These authors suggested 
that CUR can be an economic model for the mitigation of arsenic 
toxicity amongst rural population of West Bengal (India). Several 
reports support this proposition. Neurotoxicity of arsenic could 
be attentuated by CUR in rat [124]. They observed that strong 
antioxidant potential of CUR reduced genotoxicity of arsenic in 
Swiss albino mice. This activity was attributed to an increase in 
antioxidant enzymes viz: catalase, superoxide dismutase, glutathione 
peroxidase, glutathione transferase and glutathione itself [127]. In 
vitro studies on human peripheral lymphocytes have also confirmed 
that CUR mitigates genotoxic potential of arsenic and fluoride [126]. 
CUR treatment administered to arsenic exposed human population 
of West Bengal (India) enhanced DNA repair monitored through 
8-OHdG.  This study made on protein expression and genetic profile 
suggested protective effects of CUR both at protein and genetic levels 
[127].

Mechanism of chemoprevention expressed by CUR against 
arsenic toxicity was recently studied by Gao et al., [128]. They 
observed that it activates nuclear factor 2 (Nrf2) and phase-II enzymes 
in the liver of mice. Further, it promoted arsenic methylation. Two 
Nrf2 Downstream Genes NADP(H) Quinine Oxidoreductase I 
(NQO1) and heme oxygenase-I (HO-I) were also upregulated after 
CUR treatment. Nrf2 activation by CUR appears to be a valuable 
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factor in chemoprevention of arsenic toxicity.

CUR could protect arsenic induced cholinergic deficits by 
modulating the expression of pro and anti apoptotic proteins in the 
brain of rats. It improved mitochondrial structure and function as 
well [129].

Recent observations show that Tetrahydrocurcumin (THC) a 
metabolite of CUR was found to possess greater antioxidant activity 
than CUR.  Treatment of THC to arsenic treated rats reversed 
its hepato-toxicity. This effect was attributed to the presence of 
identical to B-diketone of 3rd and 5th substitution in hepatic moiety 
[130]. Recently, a group of workers from India used nanocurcumin 
to ameliorate arsenic toxicity in rat. It prevented genotoxicity, 
hepatotoxicity and reduced arsenic induced oxidative stress in brain 
and kidney of rats [131-134]. It could express immunomodulatory 
effects better than free curcumin [132-134]. CUR definitely offers 
advantages over other antioxidants.

Selenium: Selenium (Se) was discovered in 1817 by Swedish 
chemist Berzelius, who named it after the moon goddess, selene, 
in Greek language. Today, almost 200 years later, selenium is well 
established as an essential trace element of fundamental importance 
to human health. Se is primarily known for its antioxidative properties 
[135]. Keshan disease is a potentially fatal form of cardiomyopathy 
prevalent in children and endemic in parts of China with extremely 
low levels of Se in soil. Condition can be prevented completely by Se 
supplementation [136].

The incorporation of Se as selenocysteine in 25 proteins by a 
highly elaborate cotranslation mechanism has defined the human 
“selenoproteome”, in which the precise function of about half of 
the proteins is still unknown. Many of the proteins have functions 
ranging from antioxidants or oxidoreductases including Glutathione 
Peroxidases (GPxs) and Thioredoxin Reductases (TrxR). The enzyme 
glutathione peroxidase contains Se in the form of selenocysteine 
and catalyzes the oxidation of glutathione and reduction of organic 
hydroperoxides or H2O2 thereby protecting membrane lipids and 
other macromolecules from oxidative damage. Whereas, several 
studies demonstrate antioxidative properties of Se, there is no 
evidence in literature that Se exterts chemopreventive effects via such 
a mechanism [137,138].  However, inorganic Se salts i.e. selenite 
or dietary selenoamino acids lead to reductive metabolic pathway 
forming hydrogen sulfide (H2Se). H2Se then acts as Se donor to 
the Se containing amino acids found in various selenoproteins 
or it may lead to the formation of methylselenide anion [139]. 
Nevertheless, transcription factor modulation by Se may be relevant 
to chemopreventive mechanism [140].

Despite versatile nature of Se, Se-As interactions have been poorly 
described. Biswas et al., [141] in their experiment on Swiss albino 
mice demonstrated that organoselenium protects against As+UVR 
induced carcinogenesis through the formation of a compound 
seleno-bis (S-glutathionyl) arsinium rather than its antioxidative 
effect. Contrarily, Messarah et al., [142] in their observations made in 
sodium selenite and sodium arsenite treated male rats suggested that 
Se co-administration protected liver against As intoxication probably 
owing to its antioxidant properties. Recent report from Dash et al., 
[143] suggest that chronic arsenicosis in cattle could be mitigated by 
Zn and Se. Recently Krohn et al., [144] have shown that high Se lentils 

from Canadian prairies protect against As triggered atherosclerosis 
in mice.

Thus, there is ample experimental evidence to suggest that Se 
treatment can protect against arsenicosis.

Hormones as Antidotes
Melatonin: Melatonin (N-acetyl-methoxytryptamine), a main 

product of pineal gland functions as a time giver (zeitgeber) in the 
regulation of circadian rhythms [145]. It synchronizes the reproductive 
cycle with appropriate season of the year in photoperiodic species 
[146].  In non-photoperiodic species such as humans, the actions 
of melatonin are restricted to other functions of circadian clock i.e. 
consolidation of sleep and core body temperature [147].  Since 1993, 
melatonin has been recognized as a free radical scavenger [148-150]. 
Its widespread sub cellular distribution enables it to interact with 
toxic molecules, thereby reducing oxidative damage to molecules in 
both aqueous and lipid environment of the cell.  Melatonin acts as an 
indirect antioxidant through activation of major antioxidant enzymes 
including superoxide dismutase, catalase and glutathione peroxidase 
[151-154].

A few investigators have studied the protective effect of melatonin 
on arsenic toxicity. Pal and Chatterjee [155] showed that melatonin 
treatment reverses the inhibition of antioxidant enzyme caused by 
arsenic. Anti-genotoxic potential of melatonin in arsenic affected 
human population was established by Pant and Rao [156]. Melatonin 
could ameliorate testicular injury mediated by arsenic [157]. A recent 
report from Teng et al., [158] showed that melatonin protects against 
arsenic induced neurotoxicity. All these effects have been attributed 
to general antioxidant properties of melatonin.

Thyroid hormones: Much is not known on thyroid-arsenic 
interaction. Reciprocal interaction between thyroid activity and 
arsenic toxicity was studied in our laboratory. It was reported by 
Allen and Rana [159] that thyroxine treatment diminished oxidative 
stress caused by arsenic trioxide in the liver and kidney of rat.  
Hyperthyroidic conditions restricted the accumulation of arsenic in 
liver and kidney. However, histopathological observations indicated 
severe lesions in the kidney of arsenic and thyroxine treated rats [160].  
Further studies are needed to establish arsenic -thyroid-parathyroid 
interaction.

Conclusion
Arsenicosis or arseniasis are the common terms used to designate 

arsenic poisoning. They represent disease endpoints viz: specific skin 
manifestations like pigmentation and keratosis, respiratory diseases, 
liver and kidney disorders, haematological effects, neuropathy, 
diabetes and cancer. Despite that mortality is high in severe cases, 
effective management of arsenicosis remains elusive. Is there any 
“magic bullet” to treat arsenicosis? Perhaps the answer is no. During 
recent years, therapeutic intervention using a variety of molecules 
i.e. chelating agents, antioxidants, nutrients and hormones has been 
studied in a number of laboratories. A novel approach was made 
using a combination of these agents. Efficacy of nanoparticles viz: 
nano MiADMSA has also been investigated. It is interesting to know 
that tetra-hydrocurcumin a metabolite of curcumin expressed greater 
antioxidant activity than curcumin. While curcumin promotes arsenic 
methylation, As-GSH complex facilitates the efflux of arsenicals from 
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target cells. Protective effects of melatonin are attributed to its strong 
antioxidative and chelation properties. Perhaps a careful combination 
therpay may prove better than monotherapy. The studies reported so 
far have been mainly made in experimental animals and controlled 
conditions. Cohorts made in human population are insignificant. 
Suitable clinical trials using these therapeutic agents along with blind 
placebo controls, if made in future may lead to the discovery of magic 
bullet for arsenicosis.
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