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Abstract

This study aimed to investigate the interaction between the iNOS C >T 
polymorphism, the genotype of H. pylori strains and polymorphisms in DNA 
repair genes (OGG-1, APE-1 and PARP-1) in a set of gastric cancer patients. 
In our methods, polymorphism was assessed by polymerase chain reaction 
(PCR)-restriction fragment length polymorphism (RFLP) and H. pylori detection/
genotyping by PCR. A significant result shows this iNOS polymorphism more 
frequent among young gastric cancer patients than older patients (p= 0.020). 
Host genetic features, such as DNA repair enzymes (OGG-1, APE-1, PARP-
1), are also important in preventing the malignancy process. Polymorphisms 
present in these enzymes associated with iNOS activity could lead to gastric 
cancer even in the presence of low virulent H. pylori strains. Within our results, 
iNOS homozygous wild-type (CC) genotype and APE-1 polymorphic allele 
(TG+GG) group were more infected by H. pylori low-virulent strains (p=0.021). 
In Conclusion, our study indicates the importance of H. pylori and host DNA 
repair enzymes genotypes in gastric carcinogenesis in interection with this 
specific iNOS polymorphism.
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Introduction
Gastric cancer is the fifth most common cancer and the second 

leading cause of cancer-related mortality in the world [1]. In Brazil, 
it is an important cause of cancer-related death in patients, with a 
high prevalence in the Northeast region [2]. According to Lauren’s 
classification, the histological subtypes, intestinal and diffuse, show 
distinct histological and epidemiological features, as well as a different 
prognosis [3,4]. Furthermore, this tumor can be located in the proximal 
stomach (cardia), or distal (antrum, non-cardia). Differences between 
tumors located in the cardia or non-cardia region, as well as intestinal 
or diffuse subtypes, suggests that they represent distinct diseases with 
different etiologies. Gastric carcinogenesis is a multifactorial process, 
and Helicobacter pylori is the main initiator of inflammation and 
atrophic changes in the gastric mucosa [5]. The association between 
chronic H. pylori infection and the development of gastric cancer is 
well established [6]. It is known that both bacterial virulence and host 
genetic susceptibility are associated with cancer risk [7].

H. pylori has a great genetic diversity, and virulence factors 
play important roles in mucosal injury, especially the genes cagA 
(cytotoxin associated gene A) and vacA, (vacuolating cytotoxin A), 
more specifically vacAs1m1. cagA is involved in many host cell 
alterations and tightly associated with gastric cancer risk [8,9]. The 
vacA gene is present in essentially all H. pylori strains. VacA is a 
potent toxin, where it induces the formation of vacuoles in host cells. 
Additionally, the cagE and virB11 genes have been found at a relevant 
frequency in gastric cancer patients [10]. The chronic inflammatory 
process in the presence of H. pylori increases the expression of iNOS 
and can generate large amounts of reactive oxygen species (ROS), 
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which could lead to cell injury, with large amounts of NO leading 
to DNA lesions [11,12]. The DNA damage caused by ROS can lead 
to gene alterations and, therefore, requires continuous DNA repair.

Polymorphism in the iNOS gene that leads to increased expression 
or altered function of the enzyme could affect the level of the DNA 
lesions and therefore increase DNA damage. In this context, Daff et 
al. [13], using a bacterial culture, found a deletion located six amino 
acids from the currently studied C>T polymorphism in exon 16. The 
proximity between this deletion and C>T polymorphism has been 
suggested by Jing Shen et al. [14] and Jesper Johannesen et al. [15] 
to account for the increase in iNOS activity. The increased activity 
is associated with several types of diseases, such as bladder cancer 
[16,17], and diabetes [18], besides gastric cancer [14].

Recently, host genetic susceptibility to cancer related to 
polymorphisms in DNA repair enzymes has been investigated 
[19,20]. In gastric cancer, our team observed and reported before 
[21] that polymorphisms in some enzymes of the base excision repair 
(BER) system, responsible for recognizing and removing the damaged 
base, should be investigated such as the following: OGG-1 Ser326Cys 
[22,23], associated with reduced DNA repair capacity [24]; APE-1 
Asn148Glu [25,26], associated with increased sensitivity to ionizing 
radiation in homozygosis [26]; and PARP-1 Val762Ala, associated 
with gastric cancer risk besides cagA(+) H. pylori infection [27].

Therefore, this study aimed to investigate the interaction between 
the iNOS C >T polymorphism, the genotype of H. pylori strains and 
polymorphisms in DNA repair genes (OGG-1, APE-1 and PARP-1) in 
a set of gastric cancer patients.
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Materials and Methods
Patients and specimens

This study was approved by the ethics committee of the Federal 
University of Ceará. A total of 109 adenocarcinoma specimens, 
surgically resected, were obtained from three public hospitals in 
Fortaleza, Ceará State, Brazil: Walter Cantideo Hospital at Federal 
University of Ceará, Santa Casa de Misericórdia Hospital and Cesar 
Cals General Hospital. Fragments of tumor were collected during 
gastrectomy and frozen at -80OC. Histological diagnosis and tumor 
classification was based on Lauren’s criteria.

DNA extraction, H. pylori detection and genotyping
Genomic DNA was extracted from frozen tumor tissue samples 

consisting mainly of tumor cells (>80%), using the cetyltrimethyl 
ammonium bromide (CTAB) method adapted from Foster and Twell 
[28]. H. pylori infection was detected by amplification of the urease C 
gene, and virulence genes were identified using specific primers and 
conditions, as previously described by Lage et al. [29] and Domingo 
et al. [30], Atherton et al. [31] and Sozzi et al. [32]. Negative (water) 
and positive controls were assayed in each run. PCR products were 
separated on 6% polyacrylamide electrophoretic gels, which were 
then silver stained.

DNA repair polymorphism
Single nucleotide polymorphisms (SNPs) for DNA repair genes 

were determined by a PCR–RFLP based method as described by 
Vodicka et al. [33] and Shen et al. [14]. Negative (water) and positive 
(DNA containing known DNA repair genes) controls were assayed in 
each run. The amplified fragments were visualized in 2% agarose gels 
containing ethidium bromide under UV light and were digested with 
appropriate restriction endonucleases. The fragments were resolved 
by 8% polyacrylamide gel electrophoresis under non-denaturing 
conditions and silver staining. Randomly selected samples were re-
genotyped (10% of samples).

Statistical analysis
All statistical analyses were conducted with the SPSS® 15.0 version 

statistical software program (SPSS, Chicago, IL, USA), using the χ2 and 
Fisher exact tests, and p<0.05 was considered statistically significant.

Results
In this study, the intestinal type was slightly more frequent than 

the diffuse (60/109 or 55.0% versus 49/109 or 45.0%), and most of 
the tumors were located in the non-cardia region of stomach (75.2%; 
82/109). The genotype distributions were as follows: iNOS 78.0% CC 
(85/109), 21.1% CT (23/109) and 0.9% TT (1/109); APE-1 38.5% TT 
(42/109), 47.7% TG (52/109) and 13.8% GG (15/109); PARP-1 69.7% 
AA (76/109), 26.6% AG (29/109) and 3.7% GG (4/109); OGG-1 56% 
CC (61/109), 39.4% CG (43/109) and 4.6% GG (5/109).

With regard to the iNOS genotype distribution, no statistical 
difference was observed between histological characteristics or tumor 
localization (Table 1). However, considering 55 years old as the 
patients’ age cutoff, the iNOS wild-type (CC) was significantly (p= 
0.020) more frequent in patients aged ≥ 55 years than those <55 years 
old (83.1% versus 16.8%, respectively), as shown in Table 1.

Among the samples, 92.7% (101/109) were H. pylori positive; of 
these, 65.3% (66/101) were cagA(+), 50.5% (51/101) were cagE(+), 

60.4% (61/101) were virB11(+), 72.3% (73/101) were vacA s1m1, 
17.8% (18/101) were vacA s1m2, 3.9% (4/101) were vacA s2m1 and 
7.9% (8/101) were vacA s2m2.

The H. pylori strains were placed in group A, B or C, according to 
the vacA genotype as suggested by Lima et al. [10]. Group A was s1/
m1, B was s1/m2 or s2/m1 and C was s2/m2. The number that comes 
with the specific vacA group letter indicates the combination of cagA, 
cagE and virB11 genes. Number 1 indicates triple-positive strains and 
number 4 means triple-negative. Considering H. pylori as high (A1-
>B2) or low virulence (B3->C4) strains, a similar distribution of iNOS 
genotypes (p=0.086) was observed between these groups.

Considering the context of H. pylori virulence and polymorphism 
of iNOS and repair enzyme genes, the iNOS genotypes were combined 
with the genotypes of each repair enzyme as shown in Table 2. In this 
table, it is seen that patients carrying the iNOS homozygous wild-type 
genotype (CC) + APE-1 polymorphic allele (TG+GG) where were 
statically more frequently infected by low-virulent strains (B3->C4 
[88.2% (15/17); p=0.021] compared with carriers of both wild-type 
genotypes (iNOS-CC + APE-1-TT) (11.8%; 2/17). The opposite was 
observed considering the association with PARP-1, where patients 
carrying both homozygous wild-type genotypes (CC+AA, iNOS and 
PARP-1, respectively) were more frequently infected by low virulent 
strains compared with patients carrying CC+AG\GG genotypes 
(88.2% versus 11.8%, respectively). No difference was observed 
considering the association with OGG-1 genotypes or the polymorphic 
allele of iNOS (CT+TT) with the repair enzyme genotypes. Those data 
are shown in Table 2.

Discussion
It is known that the inflammatory response with high NO 

production contributes to tissue damage, suggesting it as a possible 
role in the carcinogenesis process [14]. Additionally, a deficiency in 
DNA repair also contributes to the malignant changes in gastric cells 
[34]. In this way, polymorphisms that foster increased DNA damage 
may contribute to gastric cancer development, such as the iNOS 
Ser608Leu polymorphism and DNA repair enzyme polymorphism 
(OGG-1 Ser326Cys, APE-1 Asp148Glu and PARP-1 Val762Ala) 
[14,34,35]. Because polymorphism can detected from any biological 
sample, including peripheral blood, they are promising predictive 
molecular markers for disease susceptibility which make them a 
tool for clinic use. However polymorphism susceptibility depend on 
the multiple allelic variation, as well as environment factors. Since 
in gastric cancer the inflammatory process depends on H. pylori 
virulence, the bacterial genotype must be considered.

CC
(n=85)

CT or TT
(n=24) p-value

Cardia
21

(24.7%)
6

(25.0%) 0.81
Non-cardia 64

(75.3%)
18

(75.0%)

Diffuse 38
(44.7%)

11
(45.8%) 0.89

Intestinal 47
(55.3%)

13
(54.2%)

< 55 years 16
(61.5%)

10
(38.4%) 0.02*

≥ 55 years 69
(83.1%)

14
(16.8%)

Table 1: iNOS genotype frequency considering tumor’s stomach location, 
histopathological characteristics and patients’ age.
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Concerning the frequency of the iNOS genotypes, the present 
study found a high polymorphic allele frequency, as found by Shen et 
al. [36] in a study of a Chinese population with gastric cancer (24.4%). 
The low frequency of the iNOS homozygous genotype (TT) identified in 
the present study, was similar to the value of 3.4% reported by Fermin-
Mearin et al. [37] in a study conducted in Spain with esophageal 
achalasia.

The association observed in the present study between iNOS 
wild-type genotype and older patients could be explained when iNOS 
activity is taken into account. It is interesting to note that Escames 
et al. [38], using an animal model, showed a natural increase in 
iNOS activity and NO production in the aging process. When the 
gene polymorphisms of the repair enzymes were associated with the 
iNOS polymorphism, our data indicated that the high iNOS activity 
produced by the Ser608Leu polymorphism of iNOS is probably 
connected with the early development of gastric cancer, since the 
frequency of patients carrying the iNOS polymorphic allele (CT+TT) 
was higher in patients <55 years old than ≥ 55 years (38.4% versus 
16.8%, respectively). On the other hand, since there is a natural 
increase in iNOS activity with aging, this polymorphism may not 
have an influence in older patients [38].

In this study, a high percentage of the tumor samples were H. 
pylori positive, which is in line with the finding of a high rate of 
infection with H. pylori in the Brazilian population [39].

Several polymorphisms in DNA repair enzymes, including OGG-
1, APE-1 and PARP-1, have been studied in many types of cancer, 
because of their role in maintaining genome integrity [19,22,40]. 
OGG1-mediated removal of 8-oxoguanine from DNA, which is a 
major base damage produced by ROS, may be affected by the presence 
of the Ser326Cys polymorphism. This polymorphism may decrease 

OGG-1 substrate specificity and capacity to excise 8-oxoguanine due 
to remodeling of its phosphorylation status and cellular localization 
[34]. The frequency of the OGG-1 polymorphic genotype (GG) was 
similar to that found by Hanaoka et al. [41] in studying Brazilian 
patients with gastric cancer. Despite the large number of studies 
showing OGG-1 as an important DNA-repair enzyme, no substantial 
results were obtained in the present study. Thus, there is a need for 
further studies analyzing the polymorphism of OGG-1 associated 
with those of other enzymes of the BER pathway to find a possible 
relevant association.

In the analysis involving iNOS and the repair enzyme genotypes, 
the patients carrying the iNOS wild-type genotype (CC) who had 
the polymorphic allele (TG/GG) of APE-1 as well as the PARP-
1 wild-type allele, were more infected by low-virulence H. pylori 
strains. It is known that APE-1 is a multifunctional enzyme, which 
is responsible for DNA repair of apurinic/apyrimidinic sites. 
However, the polymorphism Asp148Glu described in this gene 
can affect repair efficiency, as observed by Hu et al. [42] using cell 
culture. Additionally, it was shown that this polymorphism leads 
to greater sensitivity to ionizing radiation. Thus, our data suggest 
that APE-1 polymorphism contributes to gastric carcinogenesis 
associated with low-virulence strains, possibly due to the inability of 
the polymorphic enzyme to communicate with other repair enzymes 
[25]. Concerning PARP-1 wild-type association with these strains, 
it is important to note that 15 of the 19 samples showing PARP-1 
(AA) associated with low-virulence H. pylori strains (78.9%) were 
carriers of the APE-1 polymorphic allele, highlighting the relevance 
of the APE-1 polymorphism. Another explanation for this apparently 
controversial result is that PARP-1 normal activity consumes a large 
amount of NAD+ and, therefore, cell energy. Even though PARP-
1 has an important role in DNA repair, its activation may cause 
necrosis and inflammation due to this energy depletion contributing 
to the carcinogenic process [43].

The results of this study of the polymorphic allele of iNOS 
considering 55 years as a cutoff, suggest the involvement of the 
Ser608Leu polymorphism in the process of gastric carcinogenesis 
among young patients. Moreover, low-virulence strains of H. pylori 
appear to act in gastric carcinogenesis when associated with the 
presence of the polymorphic allele of APE-1 or wild-type of PARP-
1. These data of this study point these polymorphisms as potential 
marker for future use in clinical screening considering the age and H. 
pylori virulence.
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