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Abstract

As a group of economically important fish in China, groupers (Epinephelus 
spp.) are facing with insufficiency of high-quality gametes and germ plasm re-
source degradation. This situation has severely restricted the healthy develop-
ment of grouper aquaculture. It is an inevitable choice to breed new varieties 
or species of groupers to solve these problems. Traditional hybridization and 
recently developed molecular breeding are effective ways to generate novel 
high-quality species of groupers. So far, several hybrid groupers have been 
cultivated in China with significant economic values. The important areas of 
molecular breeding include Marker-Assisted Selection (MAS) and transgenic 
breeding. At present, the molecular breeding of groupers in China is focusing 
on MAS breeding. We have constructed genetic linkage maps and carried out 
Quantitative Trait Loci (QTL) analysis for a couple of groupers. Furthermore, 
we have cooperated with scientists at Sun Yat-Sen University to sequence the 
whole genome of orange-spotted grouper (E. coioides). All these works will pro-
vide a valuable resource for understanding the genetic regulation of growth and 
establishing the foundation for MAS breeding in groupers.
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generation of ideal novel species of fish. Both construction of genetic 
linkage maps and identification of Quantitative Trait Loci (QTL) 
will lay the foundation for the development of MAS program in 
groupers. Meanwhile, traditional hybridization breeding has created 
several ideal grouper hybrids, which provide genetic resources for 
understanding the molecular mechanisms of growth superiority in 
the hybrid groupers.

Hybrid Breeding 
Traditional hybridization has been an effective approach to 

improve physiological properties [4]. The first Hybrid of Epinephelus 
species, reported in 2014, hasobvious advantage in growth comparing 
with its parents [5]. It has been improved to become popular because 
of rapid growth rates and better disease resistance in recent years [6]. 
The successful hybridization of groupers are mainly composed of E. 
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Introduction
Groupers (Epinephelus spp.), a group of economically important 

marine fish species, are well-known for their rich nutrition, delicious 
taste and tender flesh [1,2]. Grouper industry has been developed 
rapidly in the past decades with wide cultivation of over 10 grouper 
species in China and South-East Asian countries [2]. Among them, 
E. coioides, E. akaara, E. awoara, and E.  malabaricus are the main 
cultured species in China (Figure 1). In the last year, the yearly 
output of groupers in China is 100,006 tons, and the production of 
major cultured provinces, including Guangdong, Fujian and Hainan, 
are 42,601, 26,905, and 26,785 tons respectively [3]. At the same 
time, degeneration of germ plasm resources, decrease of genetic 
diversity and degradation of gamete quality have been threatening 
the development and progress of grouper industry. During the past 
decade, rapid development of genomic biotechnology and increasing 
focuses on more efficient selection programs have accelerated 
genetic improvement in groupers. The high throughput sequencing 
techniques have facilitated identification of efficient molecular 
markers and implementation of Marker-Assisted Selection (MAS) 
program.MAS breeding is going to become a prospective strategy for 
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Figure 1: The main cultured groupers in China. The pictures are downloaded 
from http://www.worldfishcenter.org/databases.
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coioides♀×E. lanceolatus♂ [7,8], E. fuscoguttatus♀×E. lanceolatus♂ 
[9], E. coioides♀×E. fuscoguttatus♂ [10], E. marginatus♀×E. aeneus♂ 
[11], E. costae♀×E. marginatus♂ [12], and E. amblycephalus♀×E. 
akaara♂ [13]. Recently, researchers have paid more and more 
attention to the giant tiger groupers, Hulong (E. fuscoguttatus♀×E. 
lanceolatus♂) and Qinglong (E. coioides♀×E. lanceolatus♂) [14-
16]. Using microsatellite markers, researchers analyzed the level of 
heterozygosis and genetic structure of these grouper hybrids [6]. 
We also revealed the molecular mechanism of growth superiority 
by conducting comparative transcriptome analyses between E. 
fuscoguttatus & E. lanceolatus and their hybrid Hulong. Differential 
gene expression was observed in the brain and liver GH/IGF (growth 
hormone/insulin-like growth factor) axis and the downstream 
signaling pathways (including protein and glycogen synthesis) 
[17]; further transcriptome sequencing of muscles (effector tissues) 
proved important contribution of glycolysis in addition with calcium 
signaling and up-regulated troponins to the growth superiority 
of Hulong (Sun Y. et al., our unpublished data). In addition, the 
complete mitochondrial genomes of Hulong and Qinglong hybrids 
had been reported [18,19].

Molecular Markers and Genetic Linkage 
Maps

Molecular markers are fundamental for construction of genetic 
linkage maps, which is the key step for MAS breeding. Molecular 
markers provide a potential resource to revolutionize the breeding 
methodology by improving germ plasm characterization and cost-
efficient marker-assisted selection [20-22]. They can also be used to 
evaluate genetic resources with high accuracy. Construction of genetic 
linkage maps, based on marker development, could make significant 
contribution to chromosome assembly, genome mapping, positional 
cloning of genes, and functional genomic studies [23,24]. In many 
aquatic species [25-32], genetic linkage maps have been reported with 
different marker types, which determined the map density. Among 
the reported molecular markers, microsatellite (also termed as simple 
sequence repeat, SSR) was the most popular marker in many previous 
studies. However, with the rapid development of genomic sequencing 
in recent years, Single-Nucleotide Polymorphism (SNP) has become 
the most suitable marker type for construction of high-density 
genetic maps [33-35] because of its abundance and stability. In 
addition, maturity of sequencing techniques has made it possible to 
identify thousands of SNPs simultaneously and perform genotyping 
cost-efficiently [36,37].

Genetic linkage maps of groupers have been reported, including 

Grouper Marker type Marker number Length of map (cM) Average marker interval References

White Grouper microsatellite
Male map: 202 Male map: 886

Female map: 1053
Male: 5.0

Female: 5.8 [40]
Female map: 203

Kelp grouper
microsatellite

Male map: 161 Male map: 650.5
Female map: 944.4

Male: 5.0
Female: 6.7

[38,39]
Female map: 173

SSR
Male map: 512 Male map: 1,370.39

Femalemap:1,475.95
Male: 4.0

Female: 4.1Female map: 509

Orange-spotted grouper SNP
Sex-averaged map: 4,608 1,581.7 0.34

[41,42]
Sex-averaged map: 3,029 1,231.98 0.41

Table 1: Summary of genetic linkage maps of groupers.

Figure 2: Distribution of SNPs on the chromosomes of orange-spotted 
grouper. SNP markers on the scaffolds (dark green) were aligned onto the 
corresponding chromosomes (chr; bright green). The length unit of the upper 
axis (bright green, for the chromosomes) is centimorgan (cM) and the lower 
axis (dark green, for the sacaffolds) is millinbase (Mb)s. These data are 
summarized from our previous report [42] and unpublished results.
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microsatellite-based genetic maps of kelp grouper (E. bruneus) and 
white grouper (E. aeneus), and SNP-based genetic maps of orange-
spotted grouper (E. coioides) (see more details in Table 1). One sex-
specific genetic linkage map of kelp grouper was constructed using 
222 microsatellite markers [38]. The reported male map was 650.5cM 
in length while the total length of the female map reached 944.4cM; the 
average inter-marker distances were 5.0 cM and 6.7 cM, respectively. 
SSR markers (714) were employed to construct another genetic 
map of kelp grouper [39]. It was reported that, in male and female 
maps, the mean intervals were 4.0 cM and 4.1 cM respectively. With 
development of 222 microsatellites, a genetic linkage study of white 
grouper was conducted [40]. The constructed female and male maps 

spanned 1,053 cM and 886 cM respectively, with the average intervals 
of 5.8 cM and 5.0 cM. In several recent studies, we constructed two 
SNP-based genetic linkage maps of orange-spotted grouper [41,42]. 
The first one contained 4,608 SNPs, with the total length of 1,581.7 
cM; the average marker interval was 0.34 cM [41]. The second one 
consisted of 3,029 SNPs, spanned 1,231.98 cM, with the mean distance 
of 0.41 cM [42]. However, the genotyping technology was different. 
The former was sequenced with Multiplexed Shotgun Genotyping 
(MSG) [41], while the latter was sequenced with recently developed 
Double Digest Restriction-Site Associated DNA (ddRAD) method 
[42]. Furthermore, we constructed a novel linkage map (Figure 
2), based on 3,029 SNPs [42] corresponding to the scaffolds of the 

QTL Trait LOD* R2# (%) Annotation

qLG1 BW 3.3 19.6 fasciculation and elongation protein zeta-2-like (fez2)

qLG2 BL
3.3 21 Dol-P-Man: Man(5) GlcNAc(2)-PP-Dol alpha-1,3-mannosyltransferase (alg3)

endothelin converting enzyme 2 (ece2)

qLG5_1 BW 4.7 24.3 armadillo repeat gene deleted in velocardiofacial syndrome (arvcf)

qLG5_2 BW 3.1 17.1

qLG5_3 BW
2.8 16.5 solute carrier family 27 (fatty acid transporter), member 4 (slc27a4)

tyrosine-protein kinase SgK223 (sgk223)

qLG5_4 BW 2.9 15.8 calcium/calmodulin-dependent protein kinase 2 (camk2)

qLG5_5 BW
3.2 19.1 proline-rich coiled-coil 2B (prrc2b)

melanin-concentrating hormone receptor 1 (mchr1)

qLG5_6 BW 4.2 24.6

qLG5_7 BW 3.5 20.8

qLG5_8 BW 3.4 20 pregnancy-associated plasma protein- A (papp-a)

qLG5_9 BW 2.6 21.5 spleen tyrosine kinase (syk)

qLG5_10 BW 2.8 24.5

qLG5_11 BW 2.8 28.3 telomerase reverse transcriptase (tert)

qLG5_12 BW
2.7 14.6 WD repeat-containing protein 91-like (wdrcp91)

ftz transcription factor 1 (ftz-f1)

qLG5_13 BW 3 29.1

qLG5_14 BW 3.2 17.6

qLG5_15 BW 2.9 15.6

qLG5_16 BL 4.4 23.3

qLG5_17 BL 2.6 14.5

qLG5_18 BL 3.8 20.5

qLG5_19 BL 3.4 20.3 sarcosine dehydrogenase (sardh)

qLG5_20 BL 3.8 22.2

qLG5_21 BL 3.5 20.8

qLG7_1 BW 2.8 16.8 multidrug and toxin extrusion protein 1-like (mate1)

qLG7_2 BL 2.6 15.1 multidrug and toxin extrusion protein 1-like (mate1)

qLG21 BL 2.9 15.5 neurogenic locus notch homolog protein 1-like (notch1)

qLG24 BW 2.6 14.4

Table 2: The growth-related QTLs and genes identified in the orange-spotted grouper [42].

*LOD: Logarithm of Odds
#a Parameter for phenotypic variation explained
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reference genome (Zhang Y. et al., our unpublished data) of orange-
spotted grouper.

QTL Mapping and Candidate Gene 
Identification

Genetic linkage map is essential for QTL mapping.QTL mapping 
can be used for qualitative and quantitative traits (such as growth 
related or disease resistant) that are measured quantitatively [43]. In 
fishes, QTL for these two important traits have been reported [44,45]. 
In the examination of groupers, 3 significant QTLs affecting both 
body weight and total length were identified and confirmed [39] in 
the kelp grouper. In a recent report of orange-spotted grouper [42], 
we identified 27 significant growth-related QTLs and determined 
17 genes corresponding to these QTLs (Table 2). Interestingly, we 
supposed the leptin gene to be an important candidate for controlling 
growth-related traits. In previous studies of leptin gene of orange-
spotted grouper [46,47], researchers detected 6 and 1 growth-related 
SNPs in leptin-a and leptin-b respectively. Moreover, Growth 
Hormone-Releasing Hormone (GHRH), its receptor (GHRHR) 
and PACAP-Related Peptide/Pituitary Adenylatecyclase Activating 
Polypeptide (PRP-PACAP) were verified because of their association 
with growth in orange-spotted grouper [48]. These genetic linkage 
maps, growth-related QTLs and candidate genes could be applied 
together for further MAS breeding and may promote the research on 
genetic regulation of growth-related traits in groupers.

Conclusion
Both traditional hybridization and novel MAS breeding are 

effective ways to generate new groupers with good properties, such as 
high growth rates, efficiency of food conversion and disease resistance. 
However, the hybridization has some disadvantages, for example, it is 
difficult to overcome the barrier of distant cross-incompatibility and 
the breeding cycle is too long. The MAS not only gets over the difficulty 
and shortens the breeding cycle, but also can enhance the accuracy of 
breeding schemes. Despite MAS is at the early development stage, it is 
clear that the development of sequencing techniques, genetic linkage 
maps, QTL analysis and availability of whole genome sequences 
of groupers are creating good opportunities for applications of 
the MAS breeding strategy. Furthermore, analyses of the hybrid 
grouper transcriptomes and candidate genes for growth will play an 
important role to facilitate the progress of MAS breeding in groupers. 
Meanwhile, with the rapid development of genomic sequencing and 
high-throughput genotyping technologies, MAS is going to be more 
and more cost-efficient, which supports MAS breeding to become an 
effective strategy for generation of novel grouper varieties or species.
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