
Citation: Berger J. Duchenne Muscular Dystrophy from a Zebrafish’s Perspective. Austin J Musculoskelet Disord. 
2015;2(2): 1019.

Austin J Musculoskelet Disord - Volume 2 Issue 2 - 2015
ISSN : 2381-8948 | www.austinpublishinggroup.com 
Berger. © All rights are reserved

Austin Journal of Musculoskeletal Disorders
Open Access

Keywords
Duchenne Muscular Dystrophy; Dystrophin; zebrafish

Editorial
Musculature plays a crucial role for essential body functions such 

as movement, breathing, or heartbeat. Hence, diseases associated 
with muscle can be devastating; not only are they debilitating and life-
threatening for patients, they also have a high cost-of-illness and are 
an economic burden [1]. In general, muscle diseases are distinguished 
between Muscular Dystrophies (MD) that are characterized by 
progressive myofibre degeneration accompanied by fibrosis and 
myopathies that are diagnosed by muscle hypotonia and weakness 
without dystrophic features. Duchenne muscular dystrophy is one of 
the most frequent and severe forms of MD. Duchenne MD results 
from null mutations in the dystrophin gene (DMD) that lead to 
complete abrogation of DMD protein synthesis [2]. If the dystrophin 
function is only partially lost, for instance by in-frame deletions, 
patients generally suffer from Becker MD, which shows milder 
symptoms than Duchenne MD. Within skeletal muscle, dystrophin 
connects the actin cytoskeleton to the extracellular matrix by binding 
N-terminally to actin and C-terminally to the dystrophin-associated 
glycoprotein complex, which spans through the myofibre membrane 
and integrates into the extracellular matrix. These observations 
have led to the hypothesis that muscle breakdown in Duchenne 
MD patients is caused, at least in part, by the mechanical stress 
provoked by myofibril contraction not being transferred efficiently 
to the extracellular matrix, causing failure of sarcolemma integrity 
and subsequent fibre loss. Live imaging of translucent dystrophin-
deficient zebrafish demonstrated that myofibre detachment is 
triggered upon muscle contraction [3]. Though several other 
functions of dystrophin have also been discovered, this life imaging 
analysis suggests that the mechanical features of dystrophin have a 
substantial contribution to the pathology of Duchenne MD. In over 
3 decades of dystrophin research many animal models for Duchenne 
MD have been generated,  with the dystrophin null mutant mouse, 
named mdx, being the first and still most widely used model [4]. 
Despite their dystrophin deficiency, mdx mice lack many aspects of 
the human DMD pathology and undergo a relatively mild dystrophic 
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response [2]. Only the diaphragm and skeletal muscle of aged mdx 
mice show robust dystrophic features of degeneration, fibrosis and 
functional deficits [5,6]. Other mammalian model systems, such as the 
dystrophin-deficient dog reflect the human condition more closely 
[7], but have other disadvantages such as phenotypic variability [8], 
small litter size, prohibitive expense, and limited genetic tractability. 
Also dystrophin-deficient Zebrafish closely match many aspects 
of Duchene MD [3]. Similar to dystrophin in humans, zebrafish 
dystrophin initially localizes to the peripheral ends of the myofibres 
at the myotendinous junction and gradually shifts to non-junctional 
sites. Dystrophin deficiency in zebrafish is characterized by extensive 
muscle degeneration, fibrosis, muscle progenitor proliferation, and 
greater variation in myofibre cross-sectional areas [3]. The only 
marked difference to Duchenne MD is the decreased level of new 
myofibres with centralised nuclei. The muscle of wild type zebrafish 
larvae mainly grows through hyperplasia, which is in contrast to the 
hypertrophic muscle growth of post-natal mammals [9]. Therefore 
the discrepancy might be explained by a preferential loss of new 
myofibres during the dystrophic response.

The zebrafish animal system is well suited for high-throughput 
small molecule screens that aim to identify compounds with 
therapeutic potential from large libraries of chemicals [10]. Zebrafish 
combine effective breeding with cost-efficient husbandry and the 
embryos’ yolk enables rapid development without the need for 
feeding in the first week. More importantly, the translucent embryos 
are amenable for microscopic observation and the birefringent 
muscle readily enables assessment of the muscle integrity under 
polarized light [11]. Small molecule screens have also been performed 
with dystrophin-deficient zebrafish and several novel compounds 
have been identified that ameliorate the dystrophic pathology [12,13]. 
In a subsequent study, the potential of six identified compounds to 
up-regulate heme oxygenase 1 protein (Hmox1) has been discovered, 
revealing heme oxygenase signaling as a novel target for treatment of 
Duchenne MD [14]. However, rigorous examination of the metabolic 
and pharmacokinetic properties of identified compounds needs to be 
performed to explore their value as lead drugs. The most advanced 
drug for treatment of Duchenne MD to date is Ataluren, which is 
currently in clinical phase III [15]. Initially published as PTC124, 
Ataluren was reported to suppress premature stop codon mutations 
generated by nonsense mutations without affecting endogenous 
termination codons [16], a finding challenged by other studies [17]. 
Whereas the molecular function of Ataluren might not have fully 
been established, beneficial effects of Ataluren for the function of 
dystrophic muscle have been demonstrated in dystrophin-deficient 
zebrafish [18]. 

Much hope has been placed in gene replacement therapy to 
cure Duchenne MD, but many obstacles still need to be overcome, 
including the host immune responses to the therapeutic proteins 
or the viral capsid proteins [19,20]. A more promising strategy 
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to restore dystrophin function in Duchenne MD patients is gene 
repair therapy. Eteplirsen, currently in phase II of clinical trails, is 
an antisense oligonucleotide that targets exon 51 of dystrophin and 
mediates its exclusion from the mature dystrophin transcript [21]. In 
a process named exon, antisense oligonucleotides sterically block the 
splice motifs of a targeted exon, which leads to exclusion of the exon 
from the mature dystrophin transcript. If skipping of the targeted 
exon does not disrupt the open reading frame, the resulting altered 
dystrophin transcript can encode for a slightly shorter but largely 
functional dystrophin protein and, in case the skipped exon harbors 
a disease-causing mutation, restore dystrophin function [22]. Also in 
dystrophin-deficient zebrafish exon-skipping has been reported to 
restore dystrophin function and rescue the dystrophic phenotype [23]. 
In addition, this study has shown that about 30% to 40% of dystrophin 
transcript needs to be restored in dystrophin-deficient zebrafish to 
significantly improve muscle function and levels of about 10% to 20% 
only partially restores the function of the dystrophic muscle [23]. 
This correlates well with studies with the mdx mice demonstrating 
that approximately 20% of dystrophin significantly mitigates muscle 
pathology [24]. Similarly, patients suffering from moderate to severe 
Duchenne MD symptoms show levels of 15% or less and individuals 
with dystrophin levels above 30% suffer from milder Becker MD [25]. 
However, the challenge of the exon-skipping strategy is to effectively 
deliver antisense oligonucleotides to all tissues affected by the lack of 
dystrophin and current research is analyzing various chemistries for 
antisense oligonucleotides to optimize repair of mutant dystrophin. 
In conclusion, an abundant array of animal models for Duchenne 
MD, including dystrophin-deficient zebrafish, has been generated 
and contributed to a better understanding of dystrophin function 
and how MD is provoked by mutations in dystrophin. This research 
has opened and explored novel therapeutic pathways, which in future 
might be able to provide patients suffering from Duchenne MD a 
resolutive therapeutic treatment.
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