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Abstract

Background: Lumbar spine Clinical Adjacent Segment Pathology (CASP) 
has an annual incidence of 2.5%, and a 10-year 22% prevalence of repeat 
surgery (ReopASP). The pathophysiology remains controversial, whether due 
to increased mechanical stress on an adjacent motion segment after iatrogenic 
fusion or spondylotic disease progression. We compare CASP in traumatic and 
spondylotic patient cohorts.

Methods: A retrospective review of patients undergoing lumbar spine fusion 
for traumatic instability between 2002-2008 was compared to those undergoing 
lumbar spine fusions for degenerative disease, allowing for at least a five-year 
follow-up period. Prevalence of Reoperation for Adjacent Segment Pathology 
(ReopASP) and evidence of Radiological Adjacent Segment Pathology (RASP) 
was compared between groups.

Results: There were significant baseline clinical and technical differences 
found between groups with respect to mean age (trauma, 38.6 years versus 
spondylotic, 50.0 years, p<0.01), gender (trauma, 78% males versus 
spondylotic, 50% males, p<0.01), number of levels fused (trauma, 3 versus 
spondylotic, 1, p<0.01), and level fused (trauma, 80% thoracolumbar versus 
spondylotic, 0% thoracolumbar, p<0.01). A significant difference was found in 
the proportion of patients developing ReopASP between groups (trauma, 0/40 
versus spondylotic, 15/100, p<0.01). Stratified analysis controlling for age and 
gender still revealed a significant difference (p<0.05). The level of lumbar fusion 
could not be adjusted for as no patients in the spondylotic group underwent 
thoracolumbar junction fusion.

Conclusion: A higher rate of ReopASP in patients with spondylosis 
was found. Our findings support patient factors predisposing to progressive 
spondylosis as an etiology for CASP and ReopASP, rather than mechanical 
factors.
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Introduction
Symptomatic lumbar stenosis can have a significant impact on 

an individual’s quality of life resulting in decreased ambulation and 
functioning due to pain and/or neurological deficits. It has been 
suggested that patients undergoing treatment for lumbar spinal 
stenosis can have a comparable long-term improvement in health 
related quality of life to those undergoing total hip and total knee 
arthroplasty [1]. This improvement in quality of life following surgery 
has potentially overshadowed long-term complications such as 
Clinical Adjacent Segment Pathology (CASP) requiring reoperation 
(ReopASP) and its radiographic correlate (RASP). However, these 
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phenomena have been the subject of more rigorous investigation 
over the past decade. 2 CASP has been reported to range between 
13% at 5 years and 22% at 10 years with a mean annual incidence of 
2.5% per year [3-8]. Reoperation rates for CASP development have 
been found to range from 7.7% at 2 years to 16.5% at 5 years. This 
rate has been found to be similar in fusion and non-fusion lumbar 
spine patient cohorts alike [7]. While a multitude of studies have been 
completed investigating different clinical, technical, and radiographic 
risk factors for CASP development [2-6,9-19], evidence remains 
controversial as to the role of lumbar fusion in adjacent segment 
pathology. Current studies suggest that adjacent segment pathology 
is a multi factorial process with fusion procedures likely acting to 
accelerate the progression of natural degeneration [2]. In light of the 
continued controversy, we sought to investigate this question further 
by comparing the prevalence of CASP in a traumatic patient cohort 
undergoing lumbar fusion due to mechanical instability and in a 
spondylotic patient cohort.
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Materials and Methods
Ethics approval for the completion of this study was received from 

the local institutional Health and Research Ethics Board. Institutional 
operative records and operative billing codes were searched for all 
patients having undergone lumbar fusion procedures between 2002-
2008 to allow for at least five years of follow-up. Chart review and 
an electronic medical database were used to collect patient clinical 
and demographic information including: patient age, gender, date 
of operation, operation performed, and operative indication. The 
Picture Archive and Communication System (PACS) were used to 
gather all pre-operative and post-operative radiological data for each 
case from plain radiographs (XR) of the lumbar spine including: disc 
space height, end-plate sclerosis, and osteophytosis. Patients under 
18 years old and patients with a pathological fracture (related to 
metabolic, neoplastic or infectious etiologies), ankylosing spondylitis, 
or Diffuse Idiopathic Skeletal Hyperostosis (DISH) were excluded. 
Patients were divided into two cohorts for comparison based on the 
initial operative indication, either traumatic instability or elective 
decompression and fusion due to radiculopathy and/or claudicating.

For the purposes of this retrospective analysis, ReopASP 
was defined as a patient requiring a repeat operation for the 
recurrence of radiculopathy/claudicating symptoms referable to an 
adjacent lumbar level. Occurrence of RASP was quantified using 

a radiographic assessment scale previously shown to be a valid, 
reliable, and objective tool for assessing lumbar degenerative disease. 
This scale has also been shown to be experience independent, and 
as such no inter-rater analysis was completed [20]. The use and 
assessment of disc space height, extent of osteophyte formation, and 
degree of endplate sclerosis is a common and established method of 
quantifying degenerative disease among published grading systems 
[20-23]. Lumbar spine radiological adjacent segment degeneration 
was classified as none, mild, moderate, or severe [20]. Only patients 
demonstrating a two-grade increase in degeneration were classified as 
having RASP; patients with moderate degeneration prior to surgery 
required only a one-grade increase to be classified as having RASP. A 
Fisher’s exact test was used to detect a statistically significant difference 
between the two cohorts for: prevalence of ReopASP, prevalence of 
lumbar spine RASP, the levels fused, and gender. A t-test was used to 
compare age and follow-up period. Statistical significance was set at a 
p-value of less than 0.05.

The incidence and prevalence of ReopASP were calculated for 
each year using a life-table method and construction of a Kaplan-
Meier survivorship curve [24-26] (Figures 1 and 2). The prevalence 
of ReopASP was defined as the proportion of patients who developed 
CASP requiring reoperation over the given follow-up period. The 
annual incidence was defined as the proportion of patients requiring 
reoperation for CASP in any individual year.

Results
Forty traumatic lumbar fusion patients were identified. Baseline 

clinical and technical characteristics are outlined in (Table 1). The 
majority of patients were male (31/40, 77.5%), and the average 
age was 38.6-years old. The average length of follow-up was 7.6 
years. A total of 58 procedures were completed (18 procedures 
in addition to the index operation for each patient for mechanical 
stabilization). Fourteen of these 18 procedures were to remove spinal 
instrumentation post-fusion; three were for repeat instrumentation 
and fusion due to pseudoarthrosis, and one for wound debridement 
post-infection. No additional operations were required due to 
lumbar CASP development. The majority of trauma patients had 
multiple levels fused (median of three levels fused). Moreover, the 
majority (32/40, 80.0%) of traumatic spine patients were fused at the 
thoracolumbar junction. Thirty-four patients (85.0%) had follow-
up radiological imaging completed at a mean 29.4 months post-
operatively. No patients had developed RASP.

One hundred consecutive patients undergoing elective lumbar 
spine fusion for spondylotic disease between 2002-2008 (50 male 
and 50 female) were included. Baseline clinical and technical 
characteristics for these patients are outlined in (Table 1). The mean 
age was 49.7-years old, and the average follow-up was 7.2 years. A 
total of 126 procedures were completed (26 procedures in addition 
to the index operation for each patient). Six of these procedures were 
for pseudoarthrosis, 1 was for wound debridement post-infection, 
and one was for removal of a retained drain-tube. Eighteen of these 
procedures were due to CASP development in 10 different patients. 
The median number of levels fused in the degenerative cohort of 
patients was 1 motion segment. In contrast to the traumatic cohort, 
no patients had fusion of their thoracolumbar junction. Almost all 
patients (99/100, 99.0%) had radiological imaging completed at a 

Figure 1: Bar graph showing the annual incidence of CASP development in 
the degenerative patient cohort.

Figure 2: Kaplan-Meier survivorship curve. Each data point represents the 
total percentage of degenerative patients who entered a given year of follow-
up without clinical adjacent segment pathology.
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mean 31.1 months post-operatively, and 14/99 (14%) demonstrated 
RASP.

Many baseline factors between the two groups of patients 
were found to be significantly different. There were a significantly 
higher proportion of males in the trauma group of patients than 
the degenerative group (78% versus 50%, p-value < 0.01). The 
degenerative group was also found to be significantly older than 
the traumatic group undergoing lumbar fusion (49.7-years old 
versus 38.6-years old, respectively, p-value < 0.01). Furthermore, 
the traumatic cohort had a higher number of motion segment levels 
fused (3 versus 1, p-value < 0.01), and number of patients undergoing 
thoracolumbar fusion (80.0% versus 0.0%, p-value < 0.01) compared 
to the degenerative cohort. Importantly however, there was no 
significant difference found between the two groups with respect to 
clinical follow-up (7.6 years in the traumatic group versus 7.2 years 
in the degenerative group, p-value=0.38), nor radiological follow-up 
(29.4 months versus 31.1 months, respectively, p-value=0.73).

A significantly higher proportion of patients in the degenerative 
cohort required a second operation for CASP development as 
compared to the traumatic cohort of patients (15/100 versus 0/40, 
respectively, p-value < 0.01) as shown in (Table 2). Moreover, 
more patients in the spondylotic cohort were also found to have 
radiological progression of their degenerative disease as compared to 
the traumatic patients (14/99 versus 0/34, respectively, p-value=0.01). 
Upon stratifying for both age and gender, a statistically significant 
difference in ReopASP was still found between the two cohorts 
(both p-values <0.01) as shown (Table 3). Other baseline differences 
between the two groups of patients included the median number of 
levels fused and the number of thoracolumbar fusions completed 
between the two groups. However, as previous studies have not 
shown a definitive relationship between the number of levels fused 
and ReopASP, this was not corrected for [3-5,8,27-32]. Furthermore, 
there were no patients in the degenerative cohort that had undergone 
thoracolumbar fusion, and as such it was also not possible to correct 
for this difference.

Discussion
Spinal arthrodesis as a treatment for lumbar spine pathology 

was first described over 100 years ago by Albee for Pott’s disease 
and Hibbs for spinal deformity correction [33,34]. Since that time, 
lumbar spine decompression and instrumented fusion has become 
commonplace, and has been shown to be an excellent treatment 
option for degenerative spondylolisthesis [1,25,35]. Its high rate of 
success with respect to improving patient symptomatology has, in 
many cases, overshadowed long-term complications such as adjacent 
segment pathology. CASP refers to the development of symptoms 
and signs that correlate with radiological evidence of degeneration 
adjacent to a previous fusion construct (RASP) [36]. Similarly, RASP 
refers to evidence of degeneration on imaging at spinal levels adjacent 
to a previous fusion. Awareness of CASP and RASP has become 
increasingly more important over the past decade due to a growing 
elderly population and an increased number of lumbar spine fusion 
procedures taking place [25]. Despite the importance of CASP and 
RASP, a detailed understanding of their etiology and pathophysiology 
is currently lacking. Explanations for the development of CASP have 
been based mainly on patient propensity for degenerative spinal 
changes and altered biomechanical forces at motion segments 
adjacent to a previous fusion. The best available evidence to date 
suggests that adjacent segment pathology is likely multifactorial, with 
fusion procedures accelerating an already progressing underlying 
disease process [2]. We have recently shown that ReopASP occurs 
more frequently in cervical spine fusion of spondylotic patients than 
trauma patients [37], with a hypothesis that patients presenting with 
biomechanical instability following trauma represent a generally 
healthier population, and are thereby less susceptible to degeneration 
of senescence [38]. The objective of this study was to further explore 
this issue by examining CASP development following lumbar spine 
fusion in traumatic and spondylotic patient cohorts.

Clinical adjacent segment pathology
The prevalence of CASP after fusion is highly variable with 

a reported range between 1.9-30.3% at 5 years and a mean annual 
incidence of 2.5% per year [3-8,27]. In our study, we found a 
prevalence of ReopASP of 15% at a mean 7.2 years. This represents the 
reoperation rate for CASP, and as such may underestimate the actual 
prevalence of CASP which would include patients treated successfully 
non-operatively. However, reported rates of reoperation for CASP 
have been found to range from 7.7% at 2 years to 16.5% at 5 years and 
36.1% at 10 years [3-5,13]. Our findings are slightly lower than what 
has been reported. Several explanations could explain this difference, 
including differing practice patterns locally and elsewhere. For 
example, local spine surgeons may be more conservative in managing 
patients re-presenting with CASP. Furthermore, ascertainment bias 
may also explain this difference. Patients treated locally may have 
moved elsewhere and undergone treatment for CASP development 
(and as such were not captured in our electronic database search 
encompassing all patients within the province).

Factor Traumatic Patients 
(%)

Degenerative Patients 
(%) P-value

Gender

Male 31/40 (78%) 50/100 (50.0) <0.01

Female 9/40 (22%) 50/100 (50.0) <0.01

Age (years) 38.6 50 <0.01

Clinical follow-up (years) 7.6 7.2 0.38
Radiological follow- up 

(months) 29.4 31.1 0.73

Number of levels fused 3 1 <0.01
Level fused 

(thoracolumbar) 32/40 (80%) 0/100 (0%) <0.01

Table 1: Baseline clinical and technical characteristics from traumatic and 
degenerative patients.

Factor Traumatic Cohort 
(%)

Degenerative Cohort 
(%) P-value

Repeat operation for CASP 0/40 (0) 15/100 (15) <0.01
Radiological progression 

(RASP) 0/34 (0) 14/99 (14) 0.01

Table 2: Univariate analysis assessing rates of reoperation for CASP and RASP 
development following lumbar fusion.

Factor Traumatic Cohort (%) Degenerative Cohort (%) P-value

Age (≥25 years) 0/34 (0) 14/99 (14) 0.01

Gender (male) 0/31 (0) 8/50 (16) <0.01

Table 3: Univariate analysis of stratified age and gender requiring reoperation 
for CASP.
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Several hypotheses exist explaining the development of CASP. 
For example, it has been proposed that increased biomechanical 
stress on spinal motion segments adjacent to a fusion construct 
result in accelerated degenerative change at those levels [7,25]. 
Furthermore, simulated biomechanical studies of lumbosacral fusion 
have demonstrated increased intra-discal pressures and increased 
motion at levels adjacent to fused segments [25,39]. Animal models of 
lumbar spine fusion have also shown increased facet loading and an 
accelerated degenerative process adjacent to a previous fusion. Other 
mechanical theories suggest that, in concert with the above, that open 
dissection accelerates the degenerative process due disruption and 
loss of the integrity of bony and ligamentous supporting structures 
[7,40]. Although not definitively proven, the latter would then lend 
itself to the belief that minimally invasive approaches to lumbar fusion 
should lower the incidence of CASP [7,41-44]. In contrast, others 
believe CASP simply represents a natural history and progression 
of spondylotic disease. In support of this are population and twin-
based genetic studies showing a relationship between spondylosis and 
patient relatedness. Moreover, these patients also have a propensity 
to degenerative change elsewhere in the spine [41,45,46], and 
some studies report a similar rate of CASP development regardless 
of fusion [7,47-51]. In our study, we compare the prevalence of 
ReopASP in traumatic and degenerative groups of patients. There 
was a significantly higher prevalence of ReopASP in the degenerative 
group compared to the traumatic group of patients. Both groups 
have undergone lumbar spine arthrodesis for different indications-
the traumatic group for mechanical instability and the degenerative 
group for symptoms and signs of spondylosis. If CASP development 
(and subsequent ReopASP) were more related to iatrogenic fusion 
and altered biomechanics at the adjacent fusion levels, then it would 
be expected that there would be at least some cases of ReopASP in 
the traumatic cohort of patients. This was not observed; in fact, there 
were no cases of ReopASP in the traumatic cohort.

However, there were baseline differences between the two 
cohorts that could also be biasing these results. For example, there 
was a difference in the mean age of the two groups at the time of their 
initial operation. It could be that given a longer follow-up that the 
traumatic group of patients may go on to develop CASP and require 
ReopASP. While some studies have identified age as a risk factor for 
CASP development [27,52,53], many studies have not, and age as a 
risk factor remains controversial [3,11,13,54]. Even upon stratifying 
for age in our study, there remained a difference found between the 
two cohorts in ReopASP.

There were also technical differences between groups potentially 
explaining the difference in ReopASP found, including the number 
of levels fused and specific spinal levels fused. Significant controversy 
exists pertaining to the association of these technical factors with 
adjacent segment pathology [4,7,17,27,29,30,32,55-59]. Some argue 
that a longer fusion simply incorporates adjacent levels likely to 
undergo degeneration and thus is protective, while others claim 
that a longer fusion increases the biomechanical strain placed on 
adjacent levels due to a longer lever arm. At least two in vivo studies 
have shown an increased risk for adjacent segment pathology with 
an increase in number of levels fused. This should theoretically 
increase the presence of adjacent segment pathology in our trauma 
cohort, a finding which we did not identify [27,59]. The difference 

in specific levels incorporated into the fusion construct between the 
two groups could also explain the difference in ReopASP between 
them. How this difference would bias our results, however, is 
unclear. Some studies have found that spondylosis has a propensity 
to develop in the lower segments of the lumbar spine [7,60], whereas 
more proximally instrumented vertebrae being associated with an 
increased risk of adjacent segment pathology has also been suggested 
[27]. Unfortunately, it was not possible to stratify our analysis and 
account for this difference as no patients from the degenerative 
cohort underwent thoracolumbar fusion.

Radiographic adjacent segment pathology
Similarly to CASP and ReopASP, reported rates of RASP are also 

quite variable with a range between 8-100% being previously found 
[6,13]. The wide range of reported rates of RASP is likely related to 
the heterogeneity of studies with respect to criteria classifying and 
grading RASP, as well as differing lengths of follow-up. Among 
these grading systems, factors such has disc height, sclerosis, and 
osteophytosis are some of the most common criteria used to judge 
the extent of degeneration. The grading scale used in this study is 
also based on these three factors, and has been previously shown 
to be an objective and reliable tool for grading RASP. The rate of 
RASP found here was 14% in the degenerative cohort. Although 
a wide range in the literature exists, this is still at the lower end of 
what has been reported. The differing length of radiological follow-
up in our study in comparison to other studies could explain this 
difference. Previous studies have included both longer and shorter 
follow-up periods resulting in both lower and higher reported rates 
of RASP, respectively [6,13]. Finally, there was also a significant 
difference between the two cohorts in our study with respect to RASP 
progression. The degenerative group of patients demonstrating a 
higher rate of RASP progression, importantly, however, the length of 
radiological follow-up did not differ between the two groups.

Limitations
This is a retrospective study and as a result, is prone to innate 

biases. Moreover, it is a single institution, single-observer study. In 
comparing the two cohorts of patients, technical differences existed 
that were not accounted for upon analysis. For example, neither the 
number of levels fused, nor the specific lumbar spine level fused were 
controlled for. As previously discussed, although the former factors 
relationship to CASP and ReopASP remains controversial, the specific 
levels fused between the two patient groups likely does represent 
a limiting factor in our analysis. Furthermore, additional clinical 
and technical factors that may affect ReopASP in our study are not 
accounted for including smoking status, type of instrumentation, and 
ascertainment bias. Accounting for these factors with identification of 
independent risk factors through multivariate analysis would be ideal, 
however difficult with no cases of ReopASP being identified in the 
traumatic patient group. Large sample sizes and/or increased effect 
size would be required to perform this kind of statistical analysis.

Conclusion
Lumbar spine arthrodesis for spondylotic disease is a common 

treatment strategy with many patients demonstrating excellent 
outcomes. An ageing population and broadening surgical 
indications for arthrodesis will likely only lead to more patients 
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undergoing spinal fusion. As a result, complications such as CASP 
and subsequent ReopASP are going to become more prevalent and 
require management. Although the etiology and pathophysiology 
of CASP remains poorly understood, here, we found a higher rate 
of ReopASP in a spondylotic group of patients undergoing elective 
lumbar spine fusion compared to a traumatic group undergoing 
fusion for mechanical instability. Even allowing for study limitations, 
our findings support the belief that CASP is related more too 
patient propensity for developing degenerative change than altered 
biomechanical forces post-fusion.
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