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Abstract

Objective: This non-systematic review discusses the feasibility and 
advancements on the application of micro-Computed Tomography (micro-CT) 
in the experimental scope of murine cardiac models.

Methods: Medline and Elsevier were searched for inclusion of relevant 
studies. A total of 69 articles were downloaded by using ‘micro-CT’, ‘murine’, 
and ‘heart’ as the keywords including synonyms like ‘mouse’, ‘rat’, ‘rodent’, and 
47 of them were retained after review. No limitations in time were considered.

Results: The major application of micro-CT in murine heart research 
included the following disease models: Atherosclerosis (AS), Myocardial 
Infarction (MI), Coronary Artery Disease (CAD), Congenital Heart Defects 
(CHD) and Ischemia/Reperfusion (I/R). Experimental advancements in recent 
years of micro-CT are listed, while limitations and challenges of micro-CT are 
briefly discussed. Future trends of the imaging technology are also mentioned 
in the following part.

Conclusion: A number of years of preclinical practices have proven the 
feasibility and efficacy of micro-CT. However, new studies based on multimodality 
are still in demand to help strengthen our understanding of the mechanisms that 
give rise to the progression of cardiac diseases. 
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mentioned in the following section.

CT imaging in clinical use 
CT scanner has rapidly evolved from single slice to multi-slice 

which started from 4-slice systems in 1998 to the latest 256-slice 
and even 320-slice CT systems [1]. Becker H-C [2] from reviewing 
the literature and clinical results concluded that cardiac CT could 
accurately diagnose heart disease or other sources of chest pain, 
markedly decrease health care expenditure, and reliably predict 
clinical outcomes with appropriate patient selection. 

Cardiac imaging with coronary CT angiography provide 
indications about: (1) evaluation of coronary arteries for atherosclerosis 
or anomalies; (2) evaluation of noncoronary pathology including the 
great vessels, chambers, myocardium, valves, or pericardium; (3) 
evaluation of cardiac chamber function, including ejection fraction 
and chamber volumes; (4) evaluation of low-to-intermediate risk 
symptomatic patients presenting with symptoms of stable angina or 
acute chest pain; and (5) discordant or inconclusive stress tests [3]. In 
a recent study [4], it was reported that the sensitivity and specificity 
of 320-slice Computed Tomography Angiography (CTA) were 100% 
and 87% to detect significant Coronary Artery Disease (CAD) in 
patients with acute chest pain in the Emergency Department.

For the cardiac surgeons, the main benefits of Multi-Detector-Row 
CT (MDCT) lie in the combination of large scan-volume coverage, 
high spatial resolution, decent identification of calcifications, and 
the record other thoracic structures simultaneously. Preoperative 
applications may include the assessment of heart valves, noninvasive 
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Introduction
Over the past 20 years, technical advances in picture acquisition 

and imaging capabilities have vastly increased the quality and 
quantity of anatomical and physiopathologic data. Micro-Computed 
tomography (Micro-CT) is a relatively new modality that rapidly 
improves high spatial resolution imaging of subtle structures. Due to 
its high density resolution, relatively low cost and scanning efficiency, 
micro-CT imaging has been improved over the last decades and has 
shown its utility in many preclinical practices. Micro-CT, suitable 
for either ex vivo or in vivo imaging, has evolved from custom-made 
to commercially available scanner. The purpose of this paper is to 
provide an overview of applications of micro-CT on murine models 
with a focus on the diagnostic accuracy and preclinical value in 
heart disease. Experimental advancements in recent years of micro-
CT are listed, while limitations and challenges of micro-CT are 
briefly discussed. Future trends of the imaging technology are also 
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evaluation of large thoracic vessels, staging of cardiac tumors, 
and programming of minimally invasive surgical procedures. 
After surgery, MDCT examinations particularly facilitate an early 
identification of severe postoperative complications [5]. MDCT may 
also be used to assess coronary artery bypass graft patency and to 
detect transplant-related complications in heart transplant recipients 
at an early stage. For instance, CT is the modality of choice in patients 
with aortic stenosis arranged for planning of aortic valve implantation. 
A multicenter trial of 1038 European patients enrolled at 32 centers 
(SOURCE-registry) showed overall survival of 76.1% after one year 
[6,7]. A two-year follow-up of patients in the placement of aortic 
transcatheter valves (PARTNER) trial supported it as an alternative 
to surgery in high risk patients with the death rate of 33.9% [8].

Applications of micro-CT in murine heart
Apart from integrative murine modeling of normal physiological 

function, micro-CT has been successfully used for detecting diseases 
of bone fracture [9,10], lung fibrosis [11], nonalcoholic fatty liver 
disease [12] and cardiac injury [13], and understanding mechanisms 
of pathological conditions. This paper summarized the applications 
of micro-CT in murine with a focus on the heart. Calcifications, 
atherosclerosis plagues, shape of vessel and cardiac structure were 
detected with or without contrast material. Cardiac functional 
metrics can be computed by 4D cardiac micro-CT data sets. All of the 
concerned articles were listed in (Table 1) chronologically.

Calcifications
Because of its enchanting characteristics such as fast switching, 

electronic programmability, distributed source, and multiplexing, 
Carbon Nano Tube (CNT) based field emission x-ray source technology 
has newly been investigated for diagnostic imaging applications. The 

feasibility for prospective-gated cardiac micro-CT imaging of free-
breathing mice under their natural position was demonstrated [14]. 
Calcification volume and plaque areas were measured using CNT-
based x-ray source in the aortic arch of ApolipoproteinE (ApoE)–null 
mice [15]. Last year, calcification in the aortic valves was detected in a 
mouse model of combined dyslipidemia and type 2 Diabetes Mellitus 
(DM) [16]. It demonstrated that the dysmetabolic state of type 2 DM 
impelled early mineralization of the aortic valve and calcified aortic 
valve disease pathogenesis. 

Atherosclerosis plagues 
When stained with a pre-commercial staining solution, excised 

hearts from an apoE knockout mouse showed atherosclerotic 
plaques in the aortic leaflet and ascending aorta [17]. Furthermore, 
freely available software tools exist for the visualization of natural 
edge boundary features of 3-dimensional tissues as well as volume 
quantification of atherosclerotic lesions at multiple foci to microliter 
accuracy. Vinay M Pai et al [18]. Demonstrated that a combination of 
OsO4 (osmium tetroxide) and micro-CT permitted the visualization 
of the coronary artery wall in intact apoE knockout mouse hearts. 
Additionally, since OsO4 preferentially attaches to lipids, it 
highlighted lipid deposition in the artery wall. This imaging protocol 
could potentially be a very useful implement for detecting plaques 
in the coronary arteries of mouse Coronary Artery Disease (CAD) 
models.

Morphology of vessels and heart chambers
Schambach and coworkers described a protocol for in vivo micro-

CTA (micro-computed tomography angiography) in mice using 
both a bolus technique with a conventional contrast agent, Imeron 
300 (INN, Latin) and angiography with a blood-pool contrast agent, 

Authors Publication 
Year Animal Models Objective Contrast Agents Type

Detombe S A, et al [22] 2008 MI mice model Cardiac Function Fenestra VC(ART, Qc, Canada in Vivo

Martinez H G, et al [17] 2009 ApoE Knockout mouse Atherosclerotic plagues without ex vivo

Sebastian J, et al [19] 2010 C57BL/6 mice Cerebral, thoracic and abdominal 
vasculature

Imeron300(INN,Latin) and 
Fenestra VC in Vivo

Badea C T, et al [25] 2011 DOB-induced cardiac stress rats Cardiac Function liposomal-based blood pool 
contrast agent in Vivo

Pai V M, et al [18] 2012 CAD mouse model coronary artery wall and lipid 
deposition OsO4 ex vivo

Detombe S A, et al [47] 2012 C57BL6/ and BALB/c mice enhancement-time curves of different 
tissues

eXIA160(Binitio Biomedical, 
Ottawa, Canada) in vivo

Sangaralingham S, et 
al [20] 2012 Fisher rats myocardial volume of intramyocardial 

and epicardial vessels
microfil(Ladd Research, 

Williston,USA) ex vivo

Vandoorne K, et al [23] 2013 MI mouse model cardiac function and angiogenesis microfil MV120 ex vivo

Detombe S A [47] 2013 C57BL/6 mice
lung volume, lung density, left 

ventricular volume and ejection 
fraction

without ex vivo

Kim A J, et al [21] 2013 CHD mouse model identifying a wide spectrum of CHD iodine contrast-enhanced agents in vivo

Wait J M, et al [15] 2013 ApoE-null mice calcification volume and plaque areas without in vivo

Le Quang K, et  l [16] 2014
a mouse model of combined 

dyslipidemia and type 2 diabetes 
mellitus

calcification in the aortic valves without in vivo

Lee C L, et al [13] 2014 mice after partial-heart irradiation permeability of myocardial vessels and 
cardiac physiology indexes AuNp in vivo

Burk L M, et al [24] 2015 I/R mice model
delayed contrast enhancement in 
the LV wall and cardiac function 

Omnipaque

300(GE Healthcare, Cork, Ireland) 
and Fenestra VC in vivo

Table 1: The checklist of applications of cardiac micro-CT in murine.

MI: Myocardial Infarction; apoE: ApolipoproteinE; DOB: Dobutamine; CAD: Coronary Artery Disease; CHD: Congenital Heart Defects; I/R: Ischemia Reperfusion
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Fenestra VC (ART, QC, Canada). The contrasts of vascular structures 
of brain, thorax and abdomen with these two agents were compared. 
From this initial experiment we learned, that using a blood-pool 
contrast agent the vessels were well detected [19]. 

To figure up the myocardial volume of intramyocardial and 
epicardial vessels, the isolated microfilm (Ladd Research, Williston, 
USA) injected into the rat hearts were harvested and prepared for 
scanning on a high resolution, volumetric custom build micro-CT 
scanner. Fischer rats of different ages separated into two groups 
underwent cardiac micro-CT imaging as well as echocardiography, 
blood pressure and fibrosis analysis. The results illustrated the 
reduction in normalized intramyocardial vessel volume of the aged 
hearts, in association with increased epicardial vessel volume, in 
the setting of increased Left Ventricle (LV) fibrosis and mild LV 
dysfunction [20].

Kim A J et al. [21] investigated the efficacy of micro-CT to screen 
Congenital Heart Defects (CHD) in stillborn/fetal mice. Analysis 
of 2105 fetal/newborn mice by iodine contrast-enhanced micro-CT 
showed this imaging modality was highly effective in identifying a 
wide spectrum of CHD. Overall, they observed an accuracy of 89.8% 
for diagnosing ventricular septal defects. Outflow tract anomalies 
were diagnosed with 97.4% accuracy. Accuracy of detecting aortic 
arch anomalies was 99.6%. 

Cardiac function
Nowadays, global cardiac functional metrics such as Cardiac 

Output (CO), Stroke Volume (SV), ejection fraction, and myocardial 
mass as well as dynamic metrics such as wall motion can be computed 
by 4D cardiac micro-CT data sets.

Equipped with retrospective gating, cardiac function in sham 
and the infracted mice could be evaluated longitudinally. Significant 
differences in the systolic volumes, diastolic volumes and EF, between 
the sham and the Myocardial Infarction (MI) groups were detected 
[22].

Similarly, excised hearts filling with microfil MV120, a radio-
opaque silicone rubber, in the cardiac arteries were used to investigate 

the impact of systemic Akt1 deficiency on cardiac function and 
angiogenesis before and after MI. Magnetic Resonance Imaging 
(MRI) revealed mildly decreased baseline cardiac function in Akt1 
null mice, whereas ex vivo stereomicroscopy and micro-CT revealed 
substantially the reduced coronary macrovasculature [23]. This 

Advantages Disadvantages

Ultrasound
measure the size of organ, volume and blood flow velocities Inexpensive

repeatedly and dynamically inexpensive without radiation low specificity

Micro-PET

high sensitivity low signal to noise ratio

high specificity expensive

security guaranteed low spatial resolution contrast agents needed

Micro-SPECT

simultaneous anatomic low accuracy and resolution

functional low contrast to noise ratio

molecular imaging contrast agents needed

MRI

no radioactive damage long acquisition time

multi-parameter imaging and high contrast to noise more costly

ratio and signal to noise ratio Technically complicated

Micro-CT

high spatial resolution
high density resolution

time-saving
cost-effective

effect of radiation

Table 2: Comparison between micro-CT and other imaging modalities.

Figure 1: 3D CT imaging of mouse heart, the upper one ex vivo, the lower 
one in vivo.
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longitudinal study provided clear evidence that mice with chronic 
loss of Akt1 exhibited improved heart function and reduced LV 
remodeling after experimental MI. Long-term inhibition of Akt1 
might offer an alternative therapeutic strategy aimed to reduce 
secondary damage caused by cardiac remodeling. 

Choi and coworkers found that the AuNp contrast agent and 
delayed DE micro-CT could be utilized to non-invasively assess 
the change in permeability of myocardial vessels after partial-heart 
irradiation [13]. They also measured a number of clinically important 
endpoints of cardiac physiology, including the LV end-diastolic 
volume, end-systolic volume, SV, EF, and CO.

Burk L M, et al [24] demonstrated the ability to identify areas 
of myocardial infarct consistently in mice and provided functional 
cardiac information using a delayed contrast enhancement technique.

Drug safety
Cardiovascular safety is an important concern in contemporary 

drug development and a significant contributor to safety-related 
attrition of novel drugs in development. Micro-CT has also been 
used for the evaluation of drug effects, such as shown in a study on 
assessment of Dobutamine (DOB) induced cardiac stress in rats [25]. 
In order to assess normal response to DOB stress in rats, SV, EF and 
correlative peripheral arterial pressures associated with the significant 
increases in CO were measured. Accordingly, the impact of such an 
enabling technology can be tremendous in evaluating cardiotoxic 
effects of various test drugs. 

Technical limitations of micro-CT
Not only micro-CT, but also several other imaging modalities 

have been adapted from their clinical counterparts for animal 
experiments, such as high-frequency ultrasound, micro Positron 
Emission Tomography (micro-PET), micro Single-Photon Emission 
Computed Tomography (micro-SPECT) and MRI. Compared to 
other imaging modalities, micro-CT has its technical merits and 
drawbacks (Table 2). 

First, radiation dose associated with micro-CT methods is 
not negligible. X-ray exposure can be harmful since it can disrupt 
chemical bonds and create free radicals in the body. Typically, the 
whole-body radiation dose for a 3D micro-CT scan reported in 
the literature ranges from 0.017Gy to 0.78Gy, depending on the 
diagnostic demand and the contrast resolution required [26]. On the 
opposite, ultrasound, echocardiography and micro-PET, remaining 
the cornerstone for diagnosing and monitoring heart disease, are 
not interfered with radioactive damage [27-30]. So there has been a 
continuing effort to improve security guarantee of this condition with 
micro-CT.

Second, the low X-ray absorption of non-mineralized tissues is 
one of the major challenges for micro-CT imaging so that contrast 
agents are commonly involved to increase the lesion-to-tissue ratio. 
Kinds of contrast materials have emerged in need. Iodine-based, 
low molecular weight contrast agents designed for clinical CT 
imaging applications (e.g. Omnipaque from GE Healthcare, Isovue 
from Bracco Diagnostic) can also be used for preclinical micro-CT 
imaging in animals even though they clear from mouse vasculature 
within seconds [31]. Iodine-based, blood pool contrast materials (e.g. 

Fenestra from ART, eXIA from Binitio Biomedical) provide stable 
enhancement over the course of minutes to an hour [32]. In addition, 
dose of contrast agents and the way of injection have an effect on the 
practice concerned with soft tissues [33].

Future trends of the imaging technology
CT imaging will continue to make progress in multiple sources, 

multiple-slice, multi-domain and multi-function, so that the 
improvements in scan speed, coverage, image quality and application 
value could be achieved. On the other hand, multimodality 
cardiovascular imaging which involves combination of at least two 
cardiovascular imaging techniques is a certain tendency in both 
clinical and experimental fields. They are typically combined in 
a side-by-side or fusion mode in order to present functional and 
morphological data to better delineate heart disease, most frequently 
used as PET/CT and SPECT/CT [34], with more proven efficacy than 
the modality used separately. Furthermore, the integration of vessel 
anatomy and myocardial perfusion imaging is admitted to provide 
better diagnostic and prognostic information that could be translated 
into improved level of experiments [35].

Discussion
Generally speaking, micro-CT is an imaging scanner allowing 

the virtual reconstruction of objects with pixel size in the micrometer 
range. X-rays generated by the X-ray tube emit toward the sample 
and the detector measures the intensity of the transmitted X-rays 
on the opposite side. Users get different attenuated X-ray shadow 
images depending on the length traveled in the absorbing material, 
the material composition and its density (i.e. attenuation coefficient). 
The 2D gray images projections, also referred to as slice plans, are 
reconstructed using mathematical (e.g. Filtered Back Projection 
FBP [36]) and iterative algorithms (e.g. Algebraic Reconstruction 
Technique ART [37]). For example, cone-beam source uses the 
Feldkamp algorithm as a tomographic reconstruction algorithm 
[38]. Finally, the reconstructed 2D radiographs are gathered and 
stacked together. As a result, the complete 3D map of the sample is 
computed and available for further processing [39]. Reconstructing 
isotropic voxels allows visualization in any orientation as 2D slices or 
a rendered 3D volume.

As we know, the contrast properties of CT significantly depend on 
the X-ray energy spectrum used to measure the object. Conventional 
CT uses a single energy spectrum and suffers from ambiguity at times 
so that two different materials that share similar grayscale intensity 
values as in the case of bone and iodine can appear identical. Dual 
energy CT yields precise anatomic and functional images by using 
two different energy spectra that can remove this ambiguity [40]. A 
two-tube/detector system ensures simultaneous acquisition of two 
projections, thus reducing scanning time and the doses of contrast 
injections in studies. The additional metallic beam filters are placed 
between the source and the specimen, like 1-2 mm of aluminum 
or copper. These metallic beam filters can be used to preferentially 
remove low energy photons and to improve spectral separation 
between polychromatic scans [41]. Various dual energy micro-CT 
sampling strategies are feasible, such as single source sequential 
scanning at two different kVps, simultaneous dual source acquisition 
and single source with kVp switching [42].
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The proposed method produces 5D volumetric images that 
distinguish different materials at different points in time, and can be 
used to segment regions containing iodinated blood and calculate 
cardiac function [43]. Projection interpolation and 5D bilateral 
filtration (three spatial dimensions + time + energy) help to reduce 
noise and artifacts associated with retrospective gating. With cardiac 
MRI as standard of reference, double-source CT was confirmed to 
offer the possibility to quantify left ventricular function from coronary 
CT angiography datasets with sufficient diagnostic accuracy, adding 
to the value of the modality in a comprehensive cardiac assessment 
[44].

Micro-CT can provide versatile, high-contrast, quantitative in 
vivo or ex vivo images of small animals. The radiation dose and low 
x-ray contrast of soft tissues are widely recognized; however, newly 
developed contrast agents and novel acquisition and reconstruction 
strategies show extraordinary potential in overcoming these 
limitations and challenges. We just summarize the applications of 
micro-CT on heart diseases of murine, but actually it can be used on a 
variety of animal specimens. The breadth of possible applications has 
been illustrated with kinds of micro-CT images of model and non-
model animals, including volume and section images of vertebrates, 
insects, embryos, and other invertebrates [45]. Chinese medicine is 
another field that waiting for micro-CT to realize its value. Although 
comprehensive micro-CT protocols rapidly provide convincing 
result for the diagnosis of heart diseases, the appropriate usage should 
be balanced against the implied exposure to radiation and contrast 
material, therapeutically effects and associated costs.
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