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Abstract

Zinc (Zn) is an essential nutrient for bone growth and development. The 
Zn/metal response element-binding transcription factor 1 (MTF-1) regulates 
transcriptional activity by binding to the metal response elements (MRE) within 
the promoter regions of Zn-responsive genes. The effects of Zn on bone may 
be mediated through insulin-like growth factor 1, which intersects with pathways 
involved with bone metabolism, transforming growth factor β/bone morphogenic 
protein pathway (TGFβ), p38 mitogen-activated protein kinase pathway (MAPK), 
wingless-related integration site pathway (Wnt), and Hedghog pathways. The 
purpose of this in silico study was to determine whether microRNAs (miRNA) 
that are predicted to target MTF-1 also are predicted to target genes within 
the TGFβ, MAPK, Wnt, and Hedgehog signaling pathways. Ninety-five miRNAs 
were predicted to target MTF-1. Thirty-three (34.7%) of these miRNAs exhibited 
experimentally verified interactions with 68 genes among the TGFβ, MAPK, 
Wnt, and Hedgehog signaling pathways. hsa-miR-3613-3p is predicted to target 
171 genes among the TGFβ, MAPK, Wnt, and Hedgehog signaling pathways; 
six of these miRNA/gene interactions have been experimentally verified. The 
signaling pathway genes for which miRNA interacts were experimentally verified 
are associated with molecular networks involved in binding (GO:0005488) and 
catalytic activity (GO:0003824);and cellular process (GO:0009987), biological 
regulation (GO:0065007), response to stimulus (GO:0050896), developmental 
process (GO:0032502), and metabolic process (GO:0008152) within biological 
networks. These results provide evidence for links between MTF-1 and bone 
development signaling pathways, and suggest that factors regulating cellular Zn 
homesostasis through miRNA regulation of MTF-1 may also affect expression 
of bone development genes.
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deficiency leads to impaired skeletal growth [5-9]. Our research team 
has recently demonstrated that Zn supplementation significantly 
increases bone formation activity in humans [10].

The mechanisms involved with bone development are complex 
and involve numerous regulatory elements [11]. Bone mass in 
humans increases during fetal growth, is steadily maintained 
throughout childhood, peaking at ~25-30 years of age, and decreases 
as one ages [12-15]. Bone modeling during growth proceeds through 
the organized action of bone deposition and resorption to allow bones 
to expand and lengthen (i.e., periosteal apposition and endochondral 
ossification, respectively) into their mature form [16]. The amount of 
bone mineral acquired from birth to adulthood follows age- and sex-
specific patterns, and the rates of bone mass accrual differ throughout 
the pubertal phases of adolescence. Approximately 90% of adult 
bone mass is achieved during puberty, with 40% occurring during 
the four years surrounding the peak in bone mass gain [17]. Changes 
in the structure and composition of bone (i.e., cartilage and cortical 
and trabecular bone) also occur during puberty, as do increases in 
the inner and outer dimensions of long bones, which provide greater 
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Introduction
Adequate zinc (Zn) nutriture is important for normal growth and 

development. Weanling rats fed Zn-adequate or Zn-deficient diets 
exhibit significant differences in their growth rates [1,2]. Impaired 
growth in humans, as determined by 20% prevalence in the population 
exhibiting low length- or height-for-age in children less than five 
years of age, is considered a useful indicator of low Zn intakes within 
that population [3]. Zn supplementation is effective in increasing 
growth rates in children exhibiting impaired growth due to Zn 
deficiency [4]. Zn is also known to play a key role in bone metabolism, 
as data in young mice and cell culture models clearly indicate that Zn 
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structural strength to the skeleton. Increases in trabecular bone 
occur between sexual maturity stages 3 and 4 [18], and the density of 
cortical bone is lower among children vs. adults and increases more 
rapidly with epiphyseal fusion [19-21].This period of rapid bone mass 
accretion, due to heightened modeling and remodeling processes, is 
considered an opportunity for diet to have an effect on optimizing 
peak bone mass and favorably altering bone size and shape.

The effects of Zn on bone growth may be mediated through 
insulin-like growth factor 1 (IGF-1), as levels increased following Zn 
supplementation of Zn-deficient children [4]. The combination of 
Zn and insulin-like growth factor 1increased the amounts of protein 
and DNA, and cellular proliferation, in cell culture models [7]. Zn 
is thought to partition insulin-like growth factor binding protein/
insulin-like growth factor 1 complex to the cell surface, increasing its 
proximity to the receptor [22].

There are other cellular mechanisms involved in bone growth 
and development. Important signaling pathways involved with 
bone development include the transforming growth factor β/
bone morphogenic protein (TGFβ), p38 mitogen-activated protein 
kinase (MAPK), wingless-related integration site (Wnt), Hedgehog, 
Notch, and fibroblast growth factor (FGF) pathways [23]. The IGF-
1 pathway intersects with the MAPK, Wnt, and Hedgehog signaling 
pathways [24,25], and functions synergistically with TGFβ during 
mesenchymal stem cell chondrogenesis [26]. Hence, part of the Zn-
effect on bone growth and development may be mediated through its 

interaction with the IGFBP/IGF-1 complex, thereby affecting these 
four signaling pathways. 

Metal response element-binding transcription factor-1 (MTF-
1) is a Zn-finger DNA binding protein of the Cys2His2 family of 
transcription factors that functions as an intracellular Zn sensor and 
transcriptional regulator of metallothionein, and SLC30A1 (ZNT1) 
[27-30]. Of the six Zn fingers, the finger at position one functions as 
the Zn sensor [31]. Computational analysis of cis-regulatory motifs 
predicted the presence of transcription factor binding sites within the 
promoter regions of numerous miRNA genes [32]. It is postulated 
that MTF-1serves as a master regulator of miRNA gene expression, 
along with c-Myb, NF-Y, Sp-1, and AP-2α [32]. The identification 
of other genes, such as those that are stress-related, secretory liver 
proteins, liver transcription factors, signal pathway factors, and 
tissue-specific proteins, as targets for MTF-1 [33], adds further 
support for Zn and MTF-1 as playing an essential role in regulation 
of intracellular biochemical pathways. 

Genes whose transcription is regulated by Zn through MTF-
1 contain within their promoters metal response elements (MRE). 
Several genes within signaling pathways involved in bone growth 
and development contain MREs, including TGFβ receptor 1, 
inhibin/activin BC subunit, activin receptor IIB, fibroblast growth 
factor receptor, and Notch-1 [33]. Cellular Zn homeostasis and 
physiological pathways are influenced through Zn-bound MTF-1 
which then binds to the MRE [31,34], though other Zn-regulatory 

Figure 1: Heatmaps of experimentally verified and predicted miRNA/gene interactions.
Note: The miRNAs shown are those that have been experimentally verified to interact with at least one of the genes within the TGFβ (A), MAPK (B), Wnt (C), or 
Hedgehog (D) signaling pathways. The color gradation indicates whether there is no miRNA/gene interaction (white), a predicted miRNA/gene interaction (light 
color), or and experimentally verified miRNA/gene interaction (dark color). The red arrows highlight hsa-miR-3613-3p, the miRNA that exhibited the largest number 
of predicted and verified miRNA/gene interactions. The black arrows indicate the genes that have been experimentally verified to interact with hsa-miR-3613-3p. 
The white arrows indicate the genes within each pathway that are predicted and/or verified to interact with the largest number of miRNAs.
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factors may be involved [35]. Little is known about the regulation 
of MTF-1 synthesis, nevertheless it is a putative target for small 
non-coding RNAs such as microRNAs. The purpose of this in 
silico investigation is to determine whether the miRNAs that are 
predicted to target MTF-1 also target genes in TGFβ, MAPK, Wnt, 
and Hedgehog signaling pathways, pathways that are associated with 
bone development. The results suggest that significant regulation of 
bone development is mediated through miRNAs that also regulate 
expression of the intracellular Zn sensor, MTF-1. 

Materials and Methods
The miRNAs that are predicted to target MTF-1 were identified 

using the miRDB.og database, which uses the Mir Target algorithm 
to predict miRNA-target interactions [36,37]. Target scores ≥ 81 were 
considered likely miRNA/gene interactions; there were 95 miRNAs 
that fit this threshold score. These miRNAs were then used to query 
the mirPath v.3 (DIANA Tools) database [38]; the output being a list 
of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
containing predicted gene targets. The KEGG signaling pathways that 
are involved in osteoblast differentiation and bone development were 
chosen for further analysis [23]. Contained within the output is a list 
of each of the miRNAs predicted to target each of the genes within a 
particular KEGG pathway. DIANA-Tar Base v7.0 was used to identify 
which of the miRNA/gene interactions had been experimentally 
verified [39]. Therefore, for each KEGG pathway the miRNAs for 
which there was at least one experimentally verified miRNA/gene 
interaction were analyzed further. 

The Panther Overrepresentation Test (release 20160715) 
(PANTHER version 11.1 Released 2016-12-28; [40-42]) was 
performed using the genes predicted to be targets for those miRNAs 
for which there was at least one experimentally verified miRNA/gene 

interaction. Each miRNA was used to query the miRDB.org database 
for their respective predicted targets, using a Target Prediction Score 
of ≥81 as the cutoff. The gene list was tested against the PANTHER 
GO-Slim Molecular Function and –Slim Biological Process data sets. 
The Bonferroni correction for multiple testing is used by the program 
to identify significantly overrepresented annotated gene ontologies. 
Only those results with p< 0.05 are reported.

Results and Discussion
The mirPath database query yielded 75 KEGG pathways in which 

their genes were predicted to be targets for the 95 miRNAs chosen in 
this study (Supplement Table 1). The number of predicted miRNA/
gene interactions within the osteoblast/bone development signaling 
pathways, TGFβ, MAPK, Wnt, and Hedgehog, were determined 
(Supplement Tables 2-4). Of the miRNAs predicted to interact with 
MTF-1, 100% putatively targeted the genes within the MAPK signaling 
pathway; 98% putatively targeted the genes within the Wnt signaling 
pathway; 94% putatively targeted the genes within the TGFβ signaling 
pathway; and 81% putatively targeted the genes within the Hedgehog 
signaling pathway. However, only a small proportion of the miRNA/
gene interactions have been experimentally verified (MAPK, 32.6%; 
Wnt, 26.9%; TGFβ, 16.8%; Hedgehog, 10.4%; Supplement Table 5).

Hsa-miR-3613-3p exhibited the most verified and predicted 
interactions among all of the miRNAs analyzed across the four 
signaling pathway (Figure 1A-D; Supplement Table 2). The altered 
expression of hsa-miR-3613-3p is observed in tissue and plasma 
patients afflicted with non-small cell lung cancer [43], and is expressed 
in neuroblastoma and colon cancer cell lines [44,45]. There are six 
genes within the four signaling pathways in which their interaction 
with hsa-miR-3613-3p has been verified: CCND2, CSNK1A1, 
DUSP1, EP300, HSPA1B, and TAOK1. CCND2 is a member of cyclin 

Figure 2: PANTHER Gene Ontology overrepresentation. 
Note: Analysis of the genes predicted to be targets for the miRNAs that were verified experimentally to interact with TGFβ, MAPK, Wnt, or Hedgehog signaling 
pathway genes. The arrows indicate the GO categories containing the highest number of genes analyzed.
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family and is experimentally verified to be involved in the regulation 
of protein phosphorylation (GO:0001934) and cyclin-dependent 
protein serine/threonine kinase activity (GO:0045737) [45,46]. 
CSNK1A1 is casein kinase 1 α1, and is shown to participate in protein 
phosphorylation (GO:0006468) and Golgi organization(GO:0007030) 
[47,48]. DUSP1 is dual specificity phosphatase 1, responds to 
oxidative stress (GO:0006979) and exhibits negative regulation of 
MAPK kinase activity (GO:0043407) [48-50]. EP300 is E1A binding 
protein P300, a histone acetyltransferase involved with chromatin 
remodeling. It is involved in the cellular response to hypoxia 
(GO:0001666) and histone H2B acetylation (GO:0043969) [51,52]. 
HSPA1B is a member of the heat shock protein 70 family, regulates 
protein ubiqutination (GO:0031396), and the cellular response to 
oxidative stress (GO:0034599) [53,54]. TAOK1 is a serine/theronine 
protein kinase. It is involved with the cellular response to DNA 
damage (GO:0006974) and the positive regulation of the JNK cascade 
(GO:0046330) [55,56]. The many predicted and verified hsa-miR-
3613-3p/gene interactions suggests this miRNAmay play a key 
regulatory role in ]cellular physiology, as well as in bone growth and 
development.

Eighty-nine of the 95 miRNAs targeting MTF-1 putatively target 
at least one of the 64 TGFβ signaling pathway genes (Supplement 
Tables 2,3). The miRNA/gene pairs for which interactions have been 
experimentally verified are shown in Figure 1A and Supplement 
Table 5. Fifteen miRNAs have been verified to interact with 18 genes 
in the pathway. The genes verified and predicted to interact with the 
largest number of miRNAs are ACVR1C (8 miRNAs) and TGFBR2 

(7 miRNAs). 

All of the miRNAs that target MTF-1 also putatively target at least 
one of the 193 genes in the MAPK signaling pathway (Supplement 
Table 2,3). The miRNA/gene pairs for which interactions have been 
experimentally verified are shown in Figure 1B and Supplement Table 
5. Thirty-one miRNAs have been verified to interact with 38 genes 
in the pathway. The genes verified and predicted to interact with the 
largest number of miRNAs are BRAF (14 miRNAs) and MAP3K2 (19 
miRNAs).

There are 113 genes within the Wnt signaling pathway. These 
genes are predicted to be targets for 93 of the miRNAs that target 
MTF-1 (Supplement Tables 2,4). The miRNA/gene pairs for which 
interactions have been experimentally verified are shown in Figure 
1C and Supplement Table 5. Twenty-five miRNAs have been verified 
to interact with 23 genes in the pathway. The genes which are 
predicted to interact with the largest number of miRNAs are DAAM1 
(13 miRNAs), FZD3 and TBL1XR1 (11 miRNAs each).

The Hedgehog signaling pathway contains 43 genes. Compared 
to the other signaling pathways, only 77 miRNAs that target MTF-
1 are predicted to also target the Hedgehog signaling pathway 
genes (Supplement Tables 2,4).The miRNA/gene pairs for which 
interactions have been experimentally verified are shown in Figure 
1D and Supplement Table 5. The interactions of only eight miRNAs 
and six genes have been experimentally verified within the Hedgehog 
signaling pathway. The genes which are predicted to interact with 
the largest number of miRNAs are GSK3B (6 miRNAs) and HHIP 

Figure 3: A model for the Zn-dependent, and miRNA, regulation of bone growth and development signaling pathways. 
Note: (A) – Environmental, physiological stimuli induce miRNA synthesis. (B) – miRNA influence gene expression by binding to the 3´ UTR (untranslated region) 
of target mRNA, thereby inhibiting translation. There are 95 miRNAs that are predicted to target MTF-1. These miRNAs also target genes overrepresented in the 
PANTHER Gene Ontology Molecular Function and Biological Processes networks and in signaling pathways involved with osteogenesis and bone development. 
(C)– MTF-1 is a intracellular zinc sensor. Zinc/MTF-1 binds to the MRE-containing genes (metal response element), resulting in their transcription and in the 
maintenance of cellular Zn homeostasis. The MRE was also found in promoters of genes associated with osteogenic and bone development pathways [27-33]. 
(D)– Lee, et al. [32] postulates that MTF-1 is one of several master regulators of transcription of miRNAs, thereby adding another control through which Zn regulates 
gene expression. (E)– Zn may regulate miRNA expression through other transcriptional regulators such as the transcription factor KLF4 and/or miRNA genes 
containing the Zn transcriptional regulatory element in their promoters [35].
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(5 miRNAs).

The genes with reported experimental verification of their 
interaction with the miRNAs that are predicted to target MTF-1 were 
analyzed for their overrepresentation among annotated gene ontology 
molecular function and biological processes networks (Figure 2). 
The genes associated with these miRNAs were particularly involved 
with binding (GO: 0005488) and catalytic activity (GO: 0003824) 
within the molecular function category. The biological processes that 
were overrepresented by these genes include cellular process (GO: 
0009987), biological regulation (GO: 0065007), response to stimulus 
(GO: 0050896), developmental process (GO: 0032502), and metabolic 
process (GO: 0008152) (Figure 2). 

A model for the interactions between Zn, miRNAs, and signaling 
pathways involved with bone growth and development is proposed 
(Figure 3). The synthesis of miRNA is influenced by environmental 
and physiological stimuli. The miRNA inhibiting translation of 
their target genes by binding to the 3´ untranslated region of target 
mRNA.There are 95 miRNAs that are predicted to target MTF-1. 
These miRNAs also target genes within signaling pathways involved 
with osteogenesis and bone development. MTF-1 is an intracellular 
zinc sensor, and upon binding Zn will bind to the MRE-containing 
gene promoters. The result is transcription of genes involved in 
the maintenance of cellular Zn homeostasis. Certain genes within 
osteogenic and bone development pathways also contain MREs in 
their promoters [27-33]. MTF-1 is predicted to regulate miRNA 
expression as well [32], thereby adding another control through 
which Zn regulates gene expression. Other Zn-dependent regulators 
of miRNA transcription may be discovered, such as the Zn-finger 
transcription factor KLF4 and/or miRNA genes containing the Zn 
transcriptional regulatory element in their promoters [35].

Conclusion
The results from this in silico analysis suggest that miRNAs may 

play a significant role in regulating cellular Zn homeostasis by targeting 
the cellular Zn sensor, MTF-1. The miRNAs that are predicted to 
target MTF-1 also target the genes in TGFβ/BPM, MAPK, Wnt, and 
Hedgehog signaling pathways, and are likely to play an important 
role in regulating bone development. This analysis identified the 
genes most targeted by the MTF-1 targeting miRNAs, as well as the 
miRNAs that target the most genes within the signaling pathways. 
Among these genes, the MAPK and Wnt signaling pathways share 
the most genes. The miRNA that is predicted to target the most genes 
among these signaling pathways is hsa-miR-3613-3p. The genes that 
are targets for the miRNAs identified in this study are also involved 
in numerous molecular functions and biological processes within the 
cell, particularly regulation, development, and metabolism.
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