Austin Journal of Pharmacology and Therapeutics

Research Article

RAD51 135G>C Polymorphism and Cancer Risk: An Updated Meta-Analysis Involving 54,239 Subjects

Gui-li Sun¹†*, Bei-Bei Zhang²†, Chao Xuan³, Kai-Feng Deng⁴, Ge Gao⁵,Li-Min Lun³

¹Department of Endocrinology, The Second Hospital of Nanning City, The Third Affiliated Hospital of Guangxi MedicalUniversity, Nanning 530000, PR China ²Graduate School of Medicine, Mie University, Mie, Japan ³Department of Clinical Laboratory, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, PR China

⁴Department of Clinical Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, PR China

⁵Center for Reproductive Medicine,Tianjin Central Hospital of Obstetrics and Gynecology,Tianjin,PR China [†] Contribute equally to this work;

***Corresponding author:** Gui-li Sun, MD, Department of Endocrinology, The Second Hospital of Nanning City, The Third Affiliated Hospital of Guangxi MedicalUniversity, Nanning, PR China

Received: February 05, 2014; **Accepted**: March 28, 2014; **Published**: April 07, 2014

Abstract

The RAD51 plays a pivotal role in homologous recombination repair of DNA double-strand breaks inducing chromosomal breaks and genomic instability. Previous studies yielded conflicting results for the association between RAD51 135G>C polymorphism and risk of cancer. The present study aimed at investigating the pooled association using a meta-analysis on the published studies, involving 27,895 cases and 26,344 controls to assess the effect of RAD51 135G>C on cancer susceptibility. Across all populations, our results indicated that significant associations were found between RAD51 135G>C polymorphism and risk of cancer under genotypic C allele vs. G allele (OR =1.36 95% CI: 1.31-1.41), CC vs. GG (OR =2.37 95% CI: 2.12-2.65), CC vs. CG (OR =4.02 95% CI: 3.62-4.46), recessive model (OR =3.74, 95% CI: 3.40-4.11), and dominant model (OR =1.08, 95% CI: 1.03-1.13). In subgroup analyses, similar associations were found among Caucasians but not Asians. Moreover, the significant associations were found in subgroups of breast cancer, hematologic malignances, colorectal cancer, endometrial cancer, and ovarian cancer. This meta-analysis suggests that the RAD51 135G>C polymorphism was associated with susceptibility of cancer. The effect of the variants on the expression levels and the possible functional role of the variants in cancer should be addressed in further studies.

Key words: RAD51, Polymorphism, Cancer risk, Meta-analysis

Introduction

Epidemiologic studies reveal a significant environmental contribution to the pathogenesis of cancer [1,2]. Familial aggregation and twin studies indicate that the presence of genetic factors are for susceptibility to this condition [3-5]. A number of genomic screens have been performed to find genetic linkage to cancer [6-8]. The faithful repair of DNA damage such as chromosomal double-strand breaks (DSBs) is crucial for genomic integrity [9]. DSBs may cause chromosomal breaks and genomic instability, thus increasing the probability of developing cancer [10]. Homologous recombination (HR), single-strand annealing and non-homologous end-joining are considered to be the main pathways for repairing the DSBs [11]. Among them, the central HR protein is RAD51 which ensures high fidelity DNA repair by facilitating strand exchange between damaged and undamaged homologous DNA segments [10]. Thus far, two SNPs (135G/C [rs1801320] and 172G/T [rs1801321]) were discovered in the 5 UTR of RAD51 [12]. The effect of 135G→C variant on the RAD51 was alternative splicing within the 5 UTR, while the latter SNP was found to have weak effect [13].

The genetic variations of *RAD51* gene may contribute to the development and progression of cancers [14]. Many original studies have reported the role of *RAD51* 135G>C polymorphism and cancer risk, but the findings are inconclusive [15,16]. Partially, it may due to the fact that the *RAD51* gene was a minor gene for risk of cancers and/or the relatively small sample-size in each published studies. Therefore, we performed this updated meta-analysis to derive a more precise estimation of the association between *RAD51* 135G>C polymorphism and cancer.

Materials and methods

Selection of published studies

Case-control studies reporting the association between the *RAD51* 135G>Cpolymorphisms and risk of cancer published in English before *February 2013* were identified by comprehensive computer-based searches of Medline, EBSCO, and BIOSIS databases. The references of reviews and retrieved articles were also searched simultaneously to find additional eligible studies. The following keywords were used for searching: "*RAD51*" AND ("genetic variant*" or "genetic variation" or "polymorphism*") AND ("cancer" or "carcinoma" or "tumor" or "leukemia" or "laukaemia"). The most complete and recent results were used when there were multiple publications from the same study group.

Two investigators reviewed all identified studies independently to determine whether an individual study was eligible for inclusion. The selection criteria for studies to be considered for this metaanalysis were as follows: 1) case-control or case-cohort study; 2) the *RAD51*135G>Cpolymorphism in cancer; 3) proper cancer diagnosis criteria; 4) original data; 5) not animal studies. The study would be excluded if the information could not be obtained.

Ethical consideration

The study has been approved by the Ethics committee of our Institutions.

Data extraction

The characteristics of selected studies were independently extracted through a standardized protocol by two authors, and the

Citation: Sun GI, Zhang BB, Xuan C, Deng KF, Gao G,Lun LM. RAD51 135G>C Polymorphism and Cancer Risk: An Updated Meta-Analysis Involving 54,239 Subjects. Austin J Pharmacol Ther. 2014; 2 (3).9

Figure 1: Pooled OR (dominant model) and 95% CI of individual studies and pooled data for the association between polymorphism of *RAD51* 135G>C and cancer risk in overall population.

result was reviewed by a third investigator. The following information was sought from each study: first author, year of publication, study population (country, ethnicity), cancer types, the number of patients and controls for a study, genotype frequency for cases and controls, allele frequency in controls, and Hardy- Weinberg equilibrium (*HWE*).

Statistical analysis

Allele frequencies (-135C) at the *RAD51* polymorphism from each respective study were determined by the allele counting method. Genotype distributions of controls were used to estimate the frequencies of the putative risk allele (-135C) using the inverse variance method [17,18]. The deviation from the Hardy-Weinberg Equilibrium (*HWE*) for distribution of the allele frequencies was analyzed by Fisher's exact test in control groups, P < 0.05 was considered as representative of statistically significant. We examined the contrast of the C allele vs. G allele, CC vs. GG, CC vs. CG, and also examined the recessive genetic model (CC vs. CG+GG) and the dominant genetic model (CC+CG vs. GG). The associations between *RAD51* (G135C) polymorphisms and cancer susceptibility were estimated by odds ratios (ORs) with 95% confidence intervals (CIs). The significance of the pooled OR was determined by the Z-test; P <0.05 was considered statistically significant. Furthermore, to evaluate the ethnicity and cancer type-specific effects, subgroup analyses were performed.

Heterogeneity assumption was checked by a Chi-square based Q test, and it was considered statistically significant when P < 0.1 [19]. Heterogeneity was also quantified with I² metric ($I^2 = (Q-df)/Q \times 100\%$; I² < 25%, no heterogeneity; I² = 25-50%, moderate heterogeneity; I²=50-75%, large heterogeneity, I²>75%, extreme heterogeneity). When the effects were assumed to be homogenous (P > 0.1, I² < 50%), the fixed-effects model was used; otherwise, the random-effects model was more appropriate. Sensitivity analysis was performed to evaluate the stability of the results. If more than seven studies were included, Begg's test was used to measure the publication bias which was shown as a funnel plot [20]. P < 0.05 was considered as representative of statistically significant publication bias. All analyses were performed using the software STATA software, version 12.0 (Stata Corporation, College Station, TX,USA) and R statistical software, version 2.15.2 (http://www.r-project.org).

Results

Characteristics of studies

A total of fifty studies that met the inclusion concerning the association between RAD51135G>C polymorphism and risk of cancer were considered in the meta-analysis [12,15,16,21-67]. These studies involved 27,895 patients and 26,344 controls, containing thirty-eight Caucasian, five Asian, and seven mixed studies. In subgroup analysis, thirty-eight Caucasian studies (14,180/12,726) and five Asian studies (1,946/2,945) were included in ethnic-specific group. Additionally, twenty-six (19,716/19,735) studies focusing on breast cancer, seven (2,169/3,629) studies focusing on hematologic malignances, four (753/720) studies focusing on colorectal cancer, three (500/506) studies focusing on endometrial cancer, three (1,085/1,160) studies focusing on head and neck cancer, and two (2,925/1,749) studies focusing on ovarian cancer were also respectively evaluated. 84% (42/50) of these studies included used polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) analysis for genotyping. Main characteristics of included studies were listed in Table 1.

Frequency of the C allele in different groups

The pooled *RAD51*-135C frequencies were 17.77 % (95 % CI: 17.29 – 18.25 %), and 32.49 % (95 % CI: 30.66 % – 34.32 %) in the controls of Caucasian, and Asian population. Genotype distributions in the controls of all studies were in agreement with *HWE*, except ten studies [10, 23-25, 27, 39, 48, 49, 58].

Results of meta-analysis

For each study, we investigated the association between the 135G>C polymorphism and risk of cancer. Overall, *RAD51* 135 C allele was associated with a statistically increased risk of cancer, compared with the G allele (OR =1.36 95% CI: 1.31-1.41) under random-effect model. Significant associations were also observed in the genetic models for CC vs. GG (OR =2.37 95% CI: 2.12-2.65), CC vs. CG (OR =4.02 95% CI: 3.62-4.46), recessive model (OR =3.74, 95% CI: 3.40-4.11), and dominant model (OR =1.08, 95% CI: 1.03-1.13, Figure 1.). Z-test indicated that the pooled ORs were statistically significant.

Gui-li Sun

Table 1: Characteristics of the studies included in the meta-analysis.

Study	Year	Country	Ethnicity	Cancer types	Sample size (case/ control)		Genotype frequency						HWE	Allele	
						Genotyping	(Cases	Controls				nequency		
Study						methods	GGGC CC			GG GC CC			Р	G	с
Wang et al. 12	2001	America	Mixed	Breast cancer	345/263	PCR-RFLP	299	46*		238	25*		NA	NA	NA
Levy-Lahad et al. 21	2001	Israel	Caucasian	Breast cancer	167/90	PCR-RFLP	147	20	0	85	5	0	0.79	0.97	0.03
Kuschel et al. 22	2002	UK	Caucasian	Breast cancer	2,172/840	Taqman	1,904	255	13	722	116	2	0.23	0.93	0.07
Blasiak et al 23	2003	Poland	Caucasian	Breast cancer	46/60	PCR-RFLP	11	28	7	21	35	4	0.04**	0.64	0.36
Kadouri et al 24	2004	Israel	Caucasian	Breast cancer	333/260	-PCR, Taqman RFLP	290	43*		230	30*		NA	NA	NA
Seedhouse et al 25	2004	UK	Caucasian	AML	257/186	PCR-RFLP	210	44	3	166	18	2	0.08	0.94	0.06
Sliwinski et al 16	2005	Poland	Caucasian	Breast cancer	150/150	PCR-RFLP	108	38	4	106	41	3	0.67	0.84	0.16
Webb et al 20	2005	Australia	Mixed	Breast cancer	1,444/788	l aqman	1,221	212	11	676	104	8	0.08	0.92	0.08
	2005	Brazil	Mixed	Breast cancer	78/119	PCR-RFLP	68	9	1	103	13	3	0.01^^	0.92	0.08
	2005	Multiple	Asian	Dieast cancer	2 905/1 620	Togmon	2 4 4 0	143	20	450	123	14	0.11	0.07	0.13
Chang et al 30	2005	China	Asian	Breast cancer	180/121	805/1,629 Laqman		73*	10	28/	201	9	0.5Z	0.93 NA	0.07 NA
Tarasov et al ³¹	2000	Russia	Caucasian	Breast cancer	151/101 PCR-RFLP		111	36	4	148	41	2	0.65	0.88	0.12
Romanowicz-	2000	Trassia	ouucusium	Breast carloor	101/101			00		140	1	~	0.00	0.00	0.12
Makowska et al ³²	2006	Poland	Caucasian	Breast cancer	100/106	PCR-RFLP	31	40	29	21	48	37	0.45	0.42	0.58
Poplawski et al 33	2006	Poland	Caucasian	Gastric cancer	28/33	PCR-RFLP	13	15	0	25	6	2	0.09	0.85	0.15
Rollinson et al 34	2006	UK	Caucasian	AML	466/936	Taqman	431	34	1	817	115	4	0.98	0.93	0.07
Lu et al 35	2007	USA	Caucasian	HNC	716/719	PCR-RFLP	624	91	1	622	96	1	0.17	0.93	0.07
Jara et al 36	2007	Chile	Mixed	Breast cancer	131/247	PCR-RFLP	113	16	2	222	25	0	0.40	0.95	0.05
Costa et al 37	2007	Portugal	Caucasian	Breast cancer	285/646	PCR-RFLP	216	45	4	558	86	2	0.49	0.93	0.07
Antoniou et al ³⁸	2007	UK	Mixed	Breast cancer	8,893/8,145	Taqman, PCR- RFLP .etc	7,683	1,134	76	6,977	1,130	38	0.28	0.93	0.07
Jakubowska et al 39	2007	Poland	Caucasian	Breast cancer	258/258	PCR-RFLP	210	48*		188	70*		NA	NA	NA
Voso et al 40	2007	Italy	Caucasian	AML	160/161	PCR-RFLP	125	33	2	142	18	1	0.61	0.94	0.06
Synowiec et al ¹⁵	2008	Poland	Caucasian	Breast cancer	41/48	PCR-RFLP	18	10	13	17	27	4	0.14	0.64	0.36
Brooks et al 41	2008	America	Mixed	Breast cancer	611/611	PCR-RFLP	516	88	7	513	88	10	0.01**	0.91	0.09
Bhatla et al 42	2008	America	Caucasian	AML	452/646	Taqman	374	73	5	555	85	6	0.18	0.92	0.08
Krupaet al 43	2009	Poland	Caucasian	Breast cancer	135/175	PCR-RFLP	91	33	11	105	63	7	0.52	0.78	0.22
Jakubowska et al 44	2009	Poland	Caucasian	Breast cancer	1,007/1,069	Simple probe	785	207	15	822	232	15	0.76	0.88	0.12
Fabiani et al **	2009	Italy	Caucasian	MDS Dreast senser	159/160		130	28	1	136	21	3	0.06	0.92	0.08
Romanowicz-	2010	Poland	Caucasian	Breast cancer	207/500	PCR-RFLP PCR-RFLP	141		2	157	58	5	0.53	0.94	0.06
Makowska et al ⁴⁷	0040	Deleved	Onumerica		000/054		400	4.45	~	050	64	20	0.00**	0.00	0.40
Akinik et al 48	2010	Poland	Caucasian	HINC Propot concor	288/354		138	145	5	258	64 57	32	0.00**	0.82	0.18
AKISIK EL di	2011	Turkey	Caucasian	Endometrial	147/120	FUR-RELF	125	20	2	02	57		0.00	0.75	0.25
Krupa et al 50	2011	Poland	Caucasian	cancer	30/30	PCR-RFLP	6	8	16	19	9	2	0.52	0.78	0.22
Krupa et al 51	2011	Poland	Caucasian	cancer	100/100	PCR-RFLP	61	36	3	36	35	29	0.00**	0.53	0.47
Romanowicz-	2011	Poland	Caucasian	Breast cancer	700/708	PCR-RFLP	130	74	496	178	396	134	0.00**	0.53	0.47
Makowska et al ⁵²	2011	Poland	Caucasian	Endometrial	240/240		25	30	185	65	138	37	0.01**	0.56	0.44
Dhillon et al 54	2011	Austrolio	Coucosian	cancer	116/122		07	10	100	110	100	01	0.01	0.05	0.44
Hamdy et al 55	2011	Favot	Caucasian		50/130	PCR-RFLP	30	10 Q	2	26	3	1	0.55	0.95	0.05
Liuet al 56	2011	China	Asian	AMI	625/1 510	PCR-RFLP	421	187	17	1085	393	32	0.60	0.85	0.00
Gil et al 57	2012	Poland	Caucasian	Colorectal	133/100	PCR-RFLP	100	29	4	73	27	0	0.12	0.86	0.14
Sobti et al 58	2012	India	Asian	Bladder cancer	270/252	PCR-RFLP	159	82	29	134	81	37	0.00**	0.69	0.31
Romanowicz-	2012	Poland	Caucasian	Breast cancer	790/798	Tagman	160	104	526	208	426	164	0.05	0.53	0.47
Makowska et al ⁵⁹				2. i i						200			0.00		
Zhang et al 60	2012	China	Asian	Cervical cancer	80/175	PCR-RFLP	58	20	2	122	50	3	0.41	0.84	0.16
Mucha et al 61	2012	Poland	Caucasian	cancer	200/200	PCR-RFLP	161	34	5	157	37	6	0.05	0.88	0.12
Romanowicz- Makowska et al ⁶²	2012	Poland	Caucasian	Ovarian cancer	120/120	PCR-RFLP	13	15	92	33	69	18	0.07	0.56	0.44
Romanowicz- Makowska et al ⁶³	2012	Poland	Caucasian	Colorectal cancer	320/320	PCR-RFLP	51	56	213	91	164	65	0.57	0.54	0.46
Romanowicz- Makowska et al ⁶⁴	2012	Poland	Caucasian	Larynx cancer	253/253	PCR-RFLP	174	69	10	190	58	5	0.82	0.87	0.13
Gresner et al 65	2012	Poland	Caucasian	HNC	81/87	PCR-RFLP	67	13	1	71	14	2	0.22	0.90	0.10
Romanowicz- Makowska et al ⁶⁶	2012	Poland	Caucasian	Endometrial	230/236	PCR-RFLP	40	25	165	59	132	45	0.06	0.53	0.47
Hosseini et al 67	2013	Iran	Caucasian	Breast cancer	294/315	PCR-RFLP	203	77	14	252	42	21	0.00**	0.87	0.13

MALDI-TOF: matrix-assisted laser desorption/ionization time-of-flight; AML: acute myelogenous laukaemia; MDS: myelodyplastic syndrome; HNC: head and neck cancer; HWE: Hardy-Weinberg equilibrium; NA: not available.

* Number of GC+CC;

**Deviated from HWE.

Gui-li Sun

Table 2: Summary odds ratios (ORs) of the RAD51 135G/C polymorphism and cancer risk.

Subaroup		Samplo sizo		Test of hotorogenaity				Test of asso	Test of publication bics			
Subgroup	Genetic model	Patients	Controls	0	P	1 ² (%)	OR	95 % CI	7	P	7	P
	C vs. G	Tationto	001111013	819 75	0 000	94.5	1 358	1 306-1 413	15.26	1 41e-52	1 73	0.083
	CC vs. GG	-		272 50	0.000	83.9	2 368	2 124-2 646	15.51	2.97e-54	0.92	0.358
Overall	CC vs. CG			602.93	0.000	92.7	4.019	3.621-4.461	26.15	9.86e-151	1.26	0.207
	Recessive model	27,895	26,344	503.67	0.000	91.3	3.735	3.398-4.106	27.33	1.87e-164	1.41	0.159
	Dominant model			231.83	0.000	78.9	1.081	1.033-1.131	3.34	0.001	1.26	0.207
Ethnicities												
	C vs. G			658.71	0.000	94.7	1.672	1.588-1.760	19.61	1.27e-85	0.87	0.383
Caucasian	CC vs. GG			211.46	0.000	83.9	2.867	2.531-3.247	16.55	1.6-e-61	-0.33	0.744
	CC vs. CG	14,180	12,726	467.55	0.000	92.7	5.280	4.682-5.955	27.13	4.36e-162	-0.26	0.798
	Recessive model			367.60	0.000	90.8	4.741	4.264-5.272	28.76	6.79e-182	-0.10	0.921
	Dominant model			206.26	0.000	82.1	1.163	1.092-1.240	4.69	2.73e-06	0.79	0.428
Asian	C vs. G		2,945	7.11	0.069	57.8	1.030	0.913-1.163	0.49	0.626	_	_
	CC vs. GG			4.74	0.192	36.7	1.050	0.752-1.465	0.29	0.775	_	_
	CC vs. CG	1,946		3.26	0.353	8.0	1.111	0.785-1.573	0.59	0.553	—	_
	Recessive model			4.19	0.242	28.4	1.056	0.761-1.465	0.33	0.743	_	_
	Dominant model			7.87	0.096	49.2	1.063	0.934-1.211	0.92	0.355	_	_
Mixed	C vs. G			3.47	0.628	0.0	0.992	0.923-1.066	0.22	0.826	_	_
	CC vs. GG	-		8.31	0.140	39.9	1.485	1.077-2.048	2.41	0.016	_	
	CC vs. CG	11,769	10,673	9.29	0.098	46.2	1.565	1.127-2.173	2.67	0.008	_	_
	Recessive model	-		8.52	0.130	41.3	1.494	1.084-2.060	2.45	0.014	—	_
-	Dominant model			5.69	0.459	0.0	0.977	0.905-1.054	0.61	0.544	—	_
Cancer types			1									
	C vs. G	-		384.67	0.000	94.5	1.322	1.260-1.388	11.29	1.47e-29	1.55	0.121
Breast cancer	CC vs. GG	10 710	47 705	110.31	0.000	81.9	2.357	2.051-2.708	12.09	1.19e-33	1.57	0.116
	CC Vs. CG	19,716	17,735	355.80	0.000	94.4	4.087	3.578-4.668	20.74	1.516-95	1.81	0.070
	Recessive model	-		257.41	0.000	92.2	3.733	3.308-4.211	21.39	1.666-101	2.11	0.035
	Dominant model			95.07	0.000	13.1	1.063	1.006-1.123	2.18	0.029	0.37	0.708
Hematologic malignances	C VS. G	2,169	3,629	19.07	0.003	09.5	1.107	0.750.1.906	2.27	0.023		
				1.00	0.091	0.0	1.193	0.730-1.690	0.74	0.437		
	Recessive model			2.08	0.935	0.0	0.940	0.363-1.330	0.23	0.017		
	Dominant model			2.00	0.002	71.1	1.100	1 027-1 357	2.34	0.030		
Colorectal cancer	C vs G	753	720	108.62	0.002	97.2	1.615	1.366-1.910	5.60	2 14e-08		
	0 10.0	100	120	100.02	0.000	01.2	1.010	1.000 1.010	0.00	2.110.00		
	CC vs. GG			54.38	0.000	94.5	2.063	1.484-2.869	4.31	1.63e-05	_	_
	CC vs. CG			56.03	0.000	94.6	3.739	2.716-5.146	8.09	5.97e-16	_	_
	Recessive model			64.64	0.000	95.4	3.209	2.426-4.246	8.16	3.36e-16		
	Dominant model			26.55	0.000	88.7	1.064	0.840-1.348	0.51	0.608	_	_
Endometrial cancer	C vs. G	500	506	6.68	0.035	70.1	4.963	4.068-6.054	15.79	3.65e-56	_	_
	CC vs. GG			6.49	0.039	69.2	8.503	5.859-12.342	11.26	2.07e-29	—	_
	CC vs. CG			1.07	0.585	0.0	20.243	13.984-29.303	15.94	3.34e-57		
	Recessive model			2.80	0.246	28.6	13.961	10.246-19.022	16.70	1.31e-62		
	Dominant model	1.005	1 400	17.69	0.021	/4.0	2.392	1.741-3.287	5.38	7.450-08		
TINC		1,085	1,160	0.47	0.000	00./	0.701	0.004-0.887	2.90	0.003		
				1.92	0.921	0.0	0.785	0.100-3.200	0.33	0.740		
	Recessive model			0.42	0.400	0.0	0.052	0.234-3.880	0.07	0.000		
	Dominant model			24 08	0.000	91 7	0.552	0.524-0.862	3.12	0.002		
Ovarian cancer		0.007	4 7 4 2	00.50	0.000	0	4.001	4 4 40 4 500	0.02	0.002		
	C vs. G	2,925	1,749	62.53 23.34	0.000	98.4	1.334	1.140-1.562	3.60	3.18e-04		
	CC vs CG			35.80	0.000	97.2	5 212	3 086-8 204	6 17	6.83e-10		
	Recessive model			34 97	0.000	97.1	5 500	3 370-8 977	6.82	9 10e-12		
	Dominant model			9.31	0.000	89.3	1 094	0.917-1.303	1 00	0.318		
Others	C vs G	747	845	11.31	0.023	64.6	1.044	0.869-1 255	0.46	0.645		
	CC vs. GG			5.05	0.282	20.8	0.885	0.567-1.381	0.54	0.591	_	
<u> </u>	CC vs. CG			4.30	0.367	6.9	0.896	0.560-1.435	0.46	0.648	_	_
	Recessive model			4.83	0.306	17.1	0.884	0.573-1.364	0.56	0.577	_	_
	Dominant model			11.42	0.022	65.0	1.098	0.882-1.367	0.84	0.402	_	_

Note: Hematologic malignances: laukaemia and myelodyplastic syndrome; HNC: head and neck cancer.

In stratified analyses of ethnicity, a significantly increased risk was observed in Caucasians for C vs. G (OR =1.67 95% CI: 1.59-1.76), and in the genetic models for CC vs. GG (OR =2.87 95% CI: 2.53-3.25), CC vs. CG (OR =5.28 95% CI: 4.68-5.96), recessive model (OR=4.74, 95% CI: 4.26-5.27) and dominant model (OR=1.16, 95% CI 1.09-1.24, Figure 2.). Significant associations were not found in Asian population (C vs. G OR =1.03 95% CI: 0.91-1.16; CC vs. GG OR=1.05, 95% CI 0.75-1.47; CC vs. CG OR=1.11, 95% CI 0.79-1.57; recessive model OR=1.06, 95% CI 0.76-1.47 and dominant model OR=1.06, 95% CI 0.93-1.21).

Additionally, the significant associations were found in the cancer subtypes including the breast cancer (C vs. G OR =1.32 95% CI: 1.26-1.39; CC vs. GG OR=2.36, 95% CI 2.05-2.71; CC vs. CG OR=4.09, 95% CI 3.58-4.67; recessive model OR=3.73, 95% CI 3.31-4.21; and dominant model OR=1.06, 95% CI 1.01-1.12, Figure 3.), hematologic malignances (C vs. G OR =1.16 95% CI: 1.02-1.31; dominant model OR=1.18, 95% CI 1.03-1.36), colorectal cancer (C vs. G OR =1.62 95% CI: 1.37-1.91; CC vs. GG OR=2.06, 95% CI 1.48-2.87; CC vs. CG OR=3.74, 95% CI 2.72-5.15; recessive model OR=3.21, 95% CI 2.43-4.25), endometrial cancer (C vs. G OR =4.96 95% CI: 4.07-6.05; CC vs. GG OR=8.50, 95% CI 5.86-12.34; CC vs. CG OR=20.24, 95% CI 13.98-29.30; recessive model OR=13.96, 95% CI 10.25-19.02, and dominant model OR=2.39, 95% CI 1.74-3.29), and ovarian cancer (C vs. G OR =1.33 95% CI: 1.14-1.56; CC vs. GG OR=3.23, 95% CI 1.84-5.66; CC vs. CG OR=5.21, 95% CI 3.09-8.80; recessive model OR=5.50, 95% CI 3.37-8.98). The detailed results of meta-analysis were shown in Table 2.

Sensitivity analysis

We conducted sensitivity analysis to evaluate the stability of the crude results which pooled with random-effects model. When any single study was deleted, the corresponding pooled ORs were not substantially altered (data not shown), suggesting that the results of this meta-analysis are stable.

Publication bias

Begg's test and a funnel plot were performed to assess the publication bias of the literature. The results indicated that no evidence of publication bias was detected in all the genetic models except for the recessive model in the breast cancer subgroup (Table 2, Figure 4A-C.).

Discussion

In the present study, we explored the association between the *RAD51* 135G>C polymorphism and cancer risk, involving fifty eligible case-control studies. In this meta-analysis, we collected a larger sample volume and examined the contrast of the C vs. G, CC vs. GG, CC vs. CG and also examined the recessive genetic model and the dominant genetic model. Furthermore, to evaluate the ethnicity and the disease based subtype-specific effects, subgroup analyses were performed. Our results indicated that the prevalence of the C allele varied from 17.77 % to 32.49 % in different ethnic groups and individuals with the C allele have an increased risk of cancer in Caucasian population, but not in Asian population. In stratified analysis by cancer types, the significantly elevated risks with CC genotype were also found among breast cancer, hematologic

Figure 2: Pooled OR (dominant model) and 95% CI of individual studies and pooled data for the association between polymorphism of *RAD51* 135G>C and cancer risk in Caucasian population.

Figure 4: Funnel plot of the *RAD51* 135G>C polymorphism and cancer risk in (A) overall population in dominant model (z = 1.26, P = 0.207), (B) Caucasian population in dominant model (z = 0.79, P = 0.428), (C) breast cancer (z = 0.37, P = 0.708) in dominant model.

malignances, colorectal cancer, endometrial cancer, and ovarian cancer.

RAD51 is a homologue of Escherichia coli recA protein, which is responsible for the central activity of the HR repair pathway. It catalyzes the invasion of the broken ends of the DSBs into the intact sister chromatid [68,69] The *RAD51* gene containing 10 exons has been mapped to chromosome 15q15.1 [70]. The G>C polymorphism of 135-loci in *RAD51* gene locating in the 5'UTR could affect mRNA stability, translation efficiency, protein level and finally influence the risk of cancer [71].

To date, a number of studies were performed to detect the association between *RAD51* 135G>C polymorphism and cancer risk. In order to evaluate the association in a larger population, some meta-analyses were performed to evaluate the association [72-75]. However, these previous meta-analyses have limitations in relatively

small sample sizes and/or limited cancer type-specific analysis using the limited genetic models. Therefore, it is essential for us to perform a new updated meta-analysis to evaluate this association. Comparing with them, our study has some improvements. First, we enlarged the sample-size including all the cancer types. Second, we performed a more comprehensive data analysis including four different genetic models. Third, we made the subgroup analysis of ethnicity, cancer types. This is the first time to evaluate the relationships between RAD51 135G>C polymorphism and so many cancer types. Previous meta-analyses were carried out to assess the effect of RAD51 135G>C polymorphism on either the risk of breast cancer, or several limited cancer types only.

Though the results of this meta-analysis were powerful, some limitations still exist. First, it is clear that environmental factors play an important role in the etiology of cancer. However, the percentage of cancer caused by environmental factors is difficult to determine. The existence of gene-environment and gene-gene interactions may affect the accuracy of our results. Second, in the subgroup analyses, the involving number of population in Asians and other cancer types except for breast cancer were relatively small which may affect to explore the real associations. Third, this meta-analysis only focused on papers published in the English language and those which were reported in other languages might bias the present results. Fourth, the significance of heterogeneity among studies was observed. We pooled ORs with random-effects model in this condition. Sensitivity analysis suggested that the results of this meta-analysis are stable. Fifth, in our study, the studies including the number of GC+CC and GG only were also included, while they were deleted in some other meta-analysis. Finally, in our meta-analyses, we found the distribution of genotypes among controls was not agreement with HWE in some studies, which were included in this study. This may be due to chance, because studies with small sample size and selection bias may also contribute to the disaccord of HWE which may influence the risk effects. Other factors like differences in gene-gene and geneenvironment interactions from different genetic backgrounds and different matching criteria may also play a role in the discrepancy. In spite of these, when studies not in HWE were corrected to account for departures from *HWE*, then the pattern of results remained the same. And the result was also consistent with the most recently published meta-analysis [75], which excluded the studies in which genotype frequencies in controls were not in accordance with HWE. Besides, our publication bias tests indicated there was no publication bias in RAD51 135G>C polymorphism, and it is likely to be reliable.

In conclusion, our result revealed that the C allele in 135-loci of *RAD51* gene was associated with a significantly increased risk of cancers including breast cancer, hematologic malignances, colorectal cancer, endometrial cancer and ovarian cancer. The increased cancer risk was detected among Caucasian population, but not among Asian population. The effect of the variants on the expression levels and the possible functional role of the variants in cancer should be addressed in further studies.

Conflicts of Interest: We declare that there are no competing interests regarding the contents of this article.

Contributions

C.X. designed the study. C.X and B.B.Z. performed the literature search, data collection and data analysis. K.F.D, G.G. and L.M.L performed data gathering and quality assessment. All authors wrote and approved the manuscript.

References

- Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. The New England journal of medicine 2000; 343: 78-85.
- Brody JG, Moysich KB, Humblet O, Attfield KR, Beehler GP. Environmental pollutants and breast cancer: epidemiologic studies. Cancer. 2007; 109: 2667-2711.
- Hsu L, Zhao LP. Assessing familial aggregation of age at onset, by using estimating equations, with application to breast cancer. Am J Hum Genet. 1996; 58: 1057-1071.
- Peto J, Mack TM. High constant incidence in twins and other relatives of women with breast cancer. Nat Genet. 2000; 26: 411-414.
- Hamilton AS, Mack TM. Puberty and genetic susceptibility to breast cancer in a case-control study in twins. N Engl J Med. 2003; 348: 2313-2322.
- Easton DF, Eeles RA. Genome-wide association studies in cancer. Hum Mol Genet. 2008; 17: R109-115.
- Chung CC, Magalhaes WC, Gonzalez-Bosquet J, Chanock SJ. Genome-wide association studies in cancer--current and future directions. Carcinogenesis. 2010; 31: 111-120.
- Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007; 39: 870-874.
- Mohindra A, Hays LE, Phillips EN, Preston BD, Helleday T. Defects in homologous recombination repair in mismatch-repair-deficient tumour cell lines. Hum Mol Genet. 2002; 11: 2189-2200.
- Henning W, Stürzbecher HW. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology. 2003; 193: 91-109.
- 11. Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res. 2004; 566: 131-167.
- 12. Wang WW, Spurdle AB, Kolachana P, Bove B, Modan B, et al. A single nucleotide polymorphism in the 5' untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2001; 10: 955-960.
- Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31: 3406-3415.
- 14. Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett. 2005; 219: 125-135.
- Synowiec E, Stefanska J, Morawiec Z, Blasiak J, Wozniak K. Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat Res. 2008; 648: 65-72.
- Sliwinski T, Krupa R, Majsterek I, Rykala J, Kolacinska A. Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat. 2005; 94: 105-109.
- Xuan C, Zhang BB, Yang T, Deng KF, Li M. Association between OCTN1/2 gene polymorphisms (1672C-T, 207G-C) and susceptibility of Crohn's disease: a meta-analysis. Int J Colorectal Dis. 2012; 27: 11-19.
- Xuan C, Lun LM, Zhao JX, Wang HW, Zhu BZ. PTPN22 gene polymorphism (C1858T) is associated with susceptibility to type 1 diabetes: a meta-analysis of 19,495 cases and 25,341 controls. Ann Hum Genet. 2013; 77: 191-203.

- Xuan C, Zhang BB, Li M, Deng KF, Yang T. No association between APOE ε 4 allele and multiple sclerosis susceptibility: a meta-analysis from 5472 cases and 4727 controls. J Neurol Sci. 2011; 308: 110-116.
- 20. Xuan C, Bai XY, Gao G, Yang Q, He GW. Association between polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and risk of myocardial infarction: a meta-analysis for 8,140 cases and 10,522 controls. Arch Med Res. 2011; 42: 677-685.
- 21. Levy-Lahad E, Lahad A, Eisenberg S, Dagan E, Paperna T. A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci U S A. 2001; 98: 3232-3236.
- Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet. 2002; 11: 1399-1407.
- Blasiak J, PrzybyÅ,owska K, Czechowska A, Zadrozny M, PertyÅ,ski T. Analysis of the G/C polymorphism in the 5'-untranslated region of the RAD51 gene in breast cancer. Acta Biochim Pol. 2003; 50: 249-253.
- Kadouri L, Kote-Jarai Z, Hubert A, Durocher F, Abeliovich D. A singlenucleotide polymorphism in the RAD51 gene modifies breast cancer risk in BRCA2 carriers, but not in BRCA1 carriers or noncarriers. Br J Cancer. 2004; 90: 2002-2005.
- 25. Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 2004; 10: 2675-2680.
- 26. Webb PM, Hopper JL, Newman B, Xiaoqing Chen, Livia Kelemen, et al. Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2005; 14: 319-323.
- Dufloth RM, Costa S, Schmitt F, Zeferino LC. DNA repair gene polymorphisms and susceptibility to familial breast cancer in a group of patients from Campinas, Brazil. Genet Mol Res. 2005; 4: 771-782.
- Eckhardt BL, Parker BS, van Laar RK, Restall CM, Natoli AL, et al. Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Molecular cancer research : MCR 2005; 3: 1-13.
- Auranen A, Song H, Waterfall C, Dicioccio RA, Kuschel B. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer. 2005; 117: 611-618.
- Chang TW, Wang SM, Guo YL, Tsai PC, Huang CJ. Glutathione S-transferase polymorphisms associated with risk of breast cancer in southern Taiwan. Breast. 2006; 15: 754-761.
- 31. Tarasov VA, Aslanyan MM, Tsyrendorzhiyeva ES, Litvinov SS, Gar'kavtseva RF, et al. Genetically determined subdivision of human populations with respect to the risk of breast cancer in women. Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections / translated from Russian 2006; 406: 66-69.
- Romanowicz-Makowska H, Smolarz B, Zadrozny M, Kulig A. Analysis of RAD51 polymorphism and BRCA1 mutations in Polish women with breast cancer. Exp Oncol. 2006; 28: 156-159.
- Poplawski T, Arabski M, Kozirowska D, Blasinska-Morawiec M, Morawiec Z. DNA damage and repair in gastric cancer--a correlation with the hOGG1 and RAD51 genes polymorphisms. Mutat Res. 2006; 601: 83-91.
- Rollinson S, Smith AG, Allan JM, Adamson PJ, Scott K, et al. RAD51 homologous recombination repair gene haplotypes and risk of acute myeloid leukaemia. Leukemia research 2007; 31: 169-174.
- 35. Lu J, Wang LE, Xiong P, Sturgis EM, Spitz MR. 172G>T variant in the 5' untranslated region of DNA repair gene RAD51 reduces risk of squamous cell carcinoma of the head and neck and interacts with a P53 codon 72 variant. Carcinogenesis. 2007; 28: 988-994.
- 36. Jara L, Acevedo ML, Blanco R, Castro VG, Bravo T. RAD51 135G>C

polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet. 2007; 178: 65-69.

- Costa S, Pinto D, Pereira D, et al. DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast cancer research and treatment 2007; 103: 209-217.
- Antoniou AC, Sinilnikova OM, Simard J, Léoné M, Dumont M. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet. 2007; 81: 1186-1200.
- 39. Jakubowska A, Gronwald J, Menkiszak J, Górski B, Huzarski T, et al. The RAD51 135 G>C polymorphism modifies breast cancer and ovarian cancer risk in Polish BRCA1 mutation carriers. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007; 16: 270-275.
- Voso MT, Fabiani E, D'Alo' F, Guidi F, Di Ruscio A. Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes. Ann Oncol. 2007; 18: 1523-1528.
- 41. Brooks J, Shore RE, Zeleniuch-Jacquotte A, Currie D, Afanasyeva Y, et al. Polymorphisms in RAD51, XRCC2, and XRCC3 are not related to breast cancer risk. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2008; 17: 1016-1019.
- 42. Bhatla D, Gerbing RB, Alonzo TA, Mehta PA, Deal K. DNA repair polymorphisms and outcome of chemotherapy for acute myelogenous leukemia: a report from the Children's Oncology Group. Leukemia. 2008; 22: 265-272.
- Krupa R, Synowiec E, Pawlowska E, Morawiec Z, Sobczuk A. Polymorphism of the homologous recombination repair genes RAD51 and XRCC3 in breast cancer. Exp Mol Pathol. 2009; 87: 32-35.
- 44. Jakubowska A, Jaworska K, Cybulski C, Janicka A, SzymaÅ, ska-Pasternak J. Do BRCA1 modifiers also affect the risk of breast cancer in non-carriers? Eur J Cancer. 2009; 45: 837-842.
- Fabiani E, D'Alò F, Scardocci A, Greco M, Di Ruscio A. Polymorphisms of detoxification and DNA repair enzymes in myelodyplastic syndromes. Leuk Res. 2009; 33: 1068-1071.
- 46. Jara L, Dubois K, Gaete D, de Mayo T, Ratkevicius N. Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population. Breast Cancer Res Treat. 2010; 122: 813-822.
- 47. Romanowicz H, Smolarz B, Baszczynski J, Zadrozny M, Kulig A. Genetics polymorphism in DNA repair genes by base excision repair pathway (XRCC1) and homologous recombination (XRCC2 and RAD51) and the risk of breast carcinoma in the Polish population. Polish journal of pathology : official journal of the Polish Society of Pathologists 2010; 61: 206-212.
- Akisik E, Yazici H, Dalay N. ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Biol Rep. 2011; 38: 343-348.
- Sliwinski T, Sitarek P, Stetkiewicz T, Sobczuk A, Blasiak J. Polymorphism of the ERalpha and CYP1B1 genes in endometrial cancer in a Polish subpopulation. J Obstet Gynaecol Res. 2010; 36: 311-317.
- Krupa R, Sobczuk A, PopÅ, awski T, Wozniak K, Blasiak J. DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep. 2011; 38: 1163-1170.
- Krupa R, Sliwinski T, Wisniewska-Jarosinska M, Chojnacki J, Wasylecka M. Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer--a case control study. Mol Biol Rep. 2011; 38: 2849-2854.
- 52. Romanowicz-Makowska H, Smolarz B, Zadrozny M, Boguslaw Westfal, Jakub Baszczynski, et al. Single nucleotide polymorphisms in the homologous recombination repair genes and breast cancer risk in Polish women. The Tohoku journal of experimental medicine 2011; 224: 201-208.
- 53. Smolarz B, Samulak D, Michalska M, GÃ³ralczyk B, SzyÅ,Å,o K. 135G>C and 172G>T polymorphism in the 5' untranslated region of RAD51 and sporadic

endometrial cancer risk in Polish women. Pol J Pathol. 2011; 62: 157-162.

- Dhillon VS, Yeoh E, Fenech M. DNA repair gene polymorphisms and prostate cancer risk in South Australia--results of a pilot study. Urol Oncol. 2011; 29: 641-646.
- 55. Hamdy MS, El-Haddad AM, Bahaa El-Din NM, Makhlouf MM, Abdel-Hamid SM. RAD51 and XRCC3 gene polymorphisms and the risk of developing acute myeloid leukemia. Journal of investigative medicine : the official publication of the American Federation for Clinical Research 2011; 59: 1124-1130.
- 56. Liu L, Yang L, Mi Y, Wang J, Li J. RAD51 and XRCC3 polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)/CBFÎ²-MYH11(+) acute myeloid leukemia. Leuk Res. 2011; 35: 1020-1026.
- 57. Gil J, Ramsey D, Stembalska A, Karpinski P, Pesz KA. The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual's susceptibility to sporadic colorectal cancer. Mol Biol Rep. 2012; 39: 527-534.
- Sobti RC, Kaur S, Sharma VL, Singh SK, Hosseini SA. Susceptibility of XPD and RAD51 genetic variants to carcinoma of urinary bladder in North Indian population. DNA Cell Biol. 2012; 31: 199-210.
- Romanowicz-Makowska H, Smolarz B, Zadrozny M, B Westfa, J Baszczyński, et al. The association between polymorphisms of the RAD51-G135C, XRCC2-Arg188His and XRCC3-Thr241Met genes and clinico-pathologic features in breast cancer in Poland. European journal of gynaecological oncology 2012; 33: 145-150.
- Zhang L, Ruan Z, Hong Q, Gong X, Hu Z. Single nucleotide polymorphisms in DNA repair genes and risk of cervical cancer: A case-control study. Oncol Lett. 2012; 3: 351-362.
- Mucha B, PrzybyÅ,owska-Sygut K, Dziki L, Dziki A, Sygut A. Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer among Polish population. Pol Przegl Chir. 2012; 84: 358-362.
- Romanowicz-Makowska H, Smolarz B, Samulak D, Michalska M, Lewy J. A single nucleotide polymorphism in the 5' untranslated region of RAD51 and ovarian cancer risk in Polish women. Eur J Gynaecol Oncol. 2012; 33: 406-410.
- Romanowicz-Makowska H, Samulak D, Michalska M, Sporny S, Langner E. RAD51 gene polymorphisms and sporadic colorectal cancer risk in Poland. Pol J Pathol. 2012; 63: 193-198.
- 64. Romanowicz-Makowska H, Smolarz B, Gajă™cka M, Kiwerska K, Rydzanicz M. Polymorphism of the DNA repair genes RAD51 and XRCC2 in smokingand drinking-related laryngeal cancer in a Polish population. Arch Med Sci. 2012; 8: 1065-1075.
- Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurewicz J. Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene. 2012; 504: 166-174.
- 66. Romanowicz-Makowska H, Smolarz B, Polac I, Sporny S. Single nucleotide polymorphisms of RAD51 G135C, XRCC2 Arg188His and XRCC3 Thr241Met homologous recombination repair genes and the risk of sporadic endometrial cancer in Polish women. The journal of obstetrics and gynaecology research 2012; 38: 918-924.
- Hosseini M, Houshmand M, Ebrahimi A. RAD51 polymorphisms and breast cancer risk. Mol Biol Rep. 2013; 40: 665-668.
- Thompson LH, Schild D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res. 2001; 477: 131-153.
- Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J. 2006; 25: 222-231.
- Hasselbach L, Haase S, Fischer D, Kolberg HC, Stürzbecher HW. Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol. 2005; 26: 589-598.
- Gray NK. Translational control by repressor proteins binding to the 5'UTR of mRNAs. Methods Mol Biol. 1998; 77: 379-397.

Gui-li Sun

- Zhou GW, Hu J, Peng XD, Li Q. RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011; 125: 529-535.
- Yu KD, Yang C, Fan L, Chen AX, Shao ZM. RAD51 135G>C does not modify breast cancer risk in non-BRCA1/2 mutation carriers: evidence from a metaanalysis of 12 studies. Breast Cancer Res Treat. 2011; 126: 365-371.
- 74. Wang Z, Dong H, Fu Y, Ding H. RAD51 135G>C polymorphism contributes

to breast cancer susceptibility: a meta-analysis involving 26,444 subjects. Breast Cancer Res Treat. 2010; 124: 765-769.

75. Zhao M, Chen P, Dong Y, Zhu X, Zhang X. Relationship between Rad51 G135C and G172T Variants and the Susceptibility to Cancer: A Meta-Analysis Involving 54 Case-Control Studies. PLoS One. 2014; 9: e87259.

Austin J Pharmacol Ther - Volume 2 Issue 3 - 2014 ISSN: 2373-6208 | www.austinpublishinggroup.com Sun et al. © All rights are reserved

Citation: Sun GI, Zhang BB, Xuan C, Deng KF, Gao G,Lun LM. RAD51 135G>C Polymorphism and Cancer Risk: An Updated Meta-Analysis Involving 54,239 Subjects. Austin J Pharmacol Ther. 2014; 2 (3).9