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Abstract

After 50 years of research in the field of severe Acute Respiratory 
Distress Syndrome (ARDS) (PaO2/FiO2<100), according to Villar, et al., only 
3 interventions stand out: low tidal volume (Vt), muscle relaxants and prone 
positioning. Nevertheless, some authors have proposed various modalities 
of spontaneous ventilation in the setting of early severe ARDS. We surmise 
that immediately after stabilization of acute cardio-ventilatory distress, an 
“analytical” management of early severe ARDS should include the following: 
reduced ventilatory demands (i.e. minimized O2 consumption: normothermia, 
etc.); improved cardiac output; upright positioning; minimized work of breathing, 
defined by a normalized tidal volume and respiratory rate; normalized acidosis; 
minimal hypercapnia; high positive end-expiratory pressure (PEEP: 10-24 cm 
H2O); low-level pressure support; and sedation without respiratory depression 
or cognitive side effects evoked by alpha-2 agonists. Such an analytical bundle 
requires evidence-based demonstration.
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Ventilation (SV) in the setting of severe ARDS (PaO2/FiO2=P/
F<100) borders on heresy. Here, early spontaneous ventilation in the 
setting of severe ARDS will make use of Pressure Support (PS), as 
early as possible once the acute cardio-ventilatory distress has been 
controlled. Three intervals should be delineated in the setting of 
ARDS: a) acute cardio-ventilatory distress (“Friday night ventilation” 
in the setting of “shock state” not considered here [3], observed 
immediately upon arrival to the critical care unit: CCU; <6-12 h) [3]; 
b) early stabilized ARDS, up to 3-7 days after the beginning of the 
symptoms, the only time interval considered in this commentary; 
c) late ARDS not considered here. Our proposition [4] emphasizes 
spontaneous ventilation (“adapt the ventilator to the patient” [5]) 
which is largely ignored. Thus our proposition is at variance with 
the conventional view: general anesthesia (GA, renamed “analog-
sedation”) with or without NMB to lower VO2 and synchronize the 
patient to the ventilator, proning and if possible, preservation of 
spontaneous breathing efforts. Therefore, can SV be used early in the 
setting of early severe stabilized ARDS? Some, including a proponent 
of short-term paralysis [6], have proposed various modalities of SV 
[5,7-15] in the setting of early severe ARDS.

ARDS is, operationally, a disease of oxygenation imposing to 
generate a high transpulmonary pressure to reopen at end-inspiration 
alveoli closed during expiration (airway closure); this imposes a high 
metabolic demand on ventilatory muscles and ultimately acidosis 
and possible ventilatory arrest. ARDS is not a disease of respiratory 
genesis nor of ventilatory muscles: these muscles need assistance 
only to the extent that the valves, circuit and tracheal tube impose 
a non-physiologic load, in addition to re-opening closed alveoli. To 
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Introduction
After 50 years of research in the field of Acute Respiratory 

Distress Syndrome (ARDS), Villar, et al. [1] state that only 3 
interventions stand out: low tidal volume (Vt), paralysis (muscle 
relaxants, Neuromuscular Blockers (NMB)) and prone positioning 
[1]. The success of proning is remarkable (28-day mortality, prone: 
16%; supine: 32% [2]). Thus, campaigning for early Spontaneous 
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put it differently, the limiting factor of life, especially in the setting 
of ARDS, is the surface available for the diffusion of O2, irrespective 
of the setting (“focal” or “diffuse” ARDS), but not the CO2 excretion. 
Indeed, the use of high PaCO2 is reported for limited periods, 
purportedly [16,17] or inadvertently [18,19]. Once the acute cardio-
ventilatory distress is controlled, the use of Controlled Mechanical 
Ventilation (CMV), with or without paralysis, to stop or impede 
spontaneous breathing makes no sense:

a) SV lowers the intrathoracic pressure and Pplat and increases 
venous return, thus Cardiac Output (CO).

b) The diaphragm unfolds the “zone 3” alveoli (i.e. converting 
more alveoli from zone 1 and 2 into zone 3 and optimizing the VA/Q), 
given al lung in the upright position (figure 11 in [32] increases 
alveolar ventilation (VA) and squeezes the hepato-splanchnic sphere, 
enhancing venous return [20].

c) In the conscious, spontaneously breathing upright patient, the 
elastic recoil of the rib cage maintains a high Functional Residual 
Capacity (FRC) and tension in the diaphragm (“spring-out force”), 
as opposed to a loss of muscle tone under deep sedation/GA with/
without paralysis [21-23].

Therefore, the VA/Q ratio is better preserved by SV than by CMV. 
Furthermore, as spontaneous ventilation lowers the intrathoracic 
pressure, increasing the surface available for O2 diffusion with a high 
positive end-expiratory pressure (PEEP i.e. >10-24 cm H2O [24]) 
is possible with acceptable Pplat (≤25-35 cm H2O). Unfortunately, 
this straightforward schema is not applicable because a) respiratory 
muscle fatigue (“fatigue”) occurs after hours of respiratory distress, 
leading to metabolic acidosis (H+) and possibly, respiratory arrest; 
b) ARDS occurs most often as a consequence of sepsis or other 
pathologies that generate Multiple-Organ Failure (MOF), but only 
rarely single-organ failure; and c) ARDS may occur in an obstructive 
lung, adding restriction to obstruction. To take into account the 
complexity of single organ failure (ARDS proper as O2 defect) within 
the setting of MOF, we hypothesized [4] that early stabilized ARDS 
should be managed by improving analytically the following items in 
the following order: CO, reduced O2 consumption (VO2), upright 
positioning, minimized work of breathing (WOB, tidal volume: Vt, 
respiratory rate: RR, controlled acidosis and CO2), high PEEP, low 
pressure support and sedation without respiratory depression and 
cognitive side-effects.

Heart
The Right Ventricle (RV), lung and Left Ventricle (LV) are pumps 

in series, which implies that a “maximally aerated lung without any 
circulation is a useless organ” [25]. Therefore, given an iterative echo-
cardiographic assessment [26], the heart should be assessed at least 
twice daily during early severe ARDS to normalize LV ejection back 
to adequacy (low “CO2 gap”<5-6 mm Hg, SsvcO2>70-75%, adequate 
lactates toward <2 mM) by any mean (volume, pulmonary arterial 
dilators, inotropes, increased right coronary perfusion with pressors 
[27], etc.). Then, the PEEP should be increased to increase FRC, 
step by step, while RV dilatation or more accurately septal bulging 
[28] or Tricuspid Annular Systolic Excursion (TAPSE) are observed 
iteratively, at each PEEP level.

Addressing the circulation first is also a consequence of the 
dependency of the P/F index upon the circulation [29]:

a) A “low PvO2 effect” decreases arterial oxygenation and 
overestimates lung injury: correcting CO improves PvO2 and P/F. 
Presumably, increased VO2 (fever, etc.) is observed together with 
an inadequate cardiac output (hypovolemia, etc.), leading to low 
SscvO2. Conversely, a “normal” VO2 is observed with depressed CO 
(cardiac failure, hypovolemia, etc.) and reduced peripheral arterial 
oxygenation.

b) By contrast, a low cardiac output lowers the shunt, increases 
P/F and underestimates the lung injury [30]. Presumably, the lowered 
CO de-recruits pulmonary capillaries, amongst other explanations 
[31]: West’s zone 3 [32] is being transformed into zone 1 (figure 11 
in [32]).

c) RV overload re-opens a foramen ovale and increases shunt 
[33].

Therefore the clinician should address circulation first before 
curing the lung.

Position
Prone positioning generates remarkable results [2] due to an 

increase in VA to well-perfused areas [34]. However, we hypothesize 
that, for bipeds, the “upright” position (60o head up reverse 
Trendelenburg position with legs down [35,36]) should be preferred, 
preferred especially when obesity or increased Intra-Abdominal 
Pressure (IAP) are present. This requires tedious iterative nursing. 
Just moving from the supine to the upright position increases the 
P/F in 32% of ARDS patients, “especially for …severe ARDS” [37]. 
In healthy volunteers with a closed glottis that are moved from a 
standing to a supine position, the intra-thoracic pressure increases 
by approximately 9 cm H2O [38]; conversely, can one infer that the 
upright position will reduce intrathoracic pressure? Furthermore, 25-
80% (mean 50%) of the increased Intra-Abdominal Pressure (IAP) is 
transmitted into the thorax [39]. Therefore, transitioning from CMV 
to SV and from the supine to an upright position in an obese patient 
or a patient presenting with increased IAP will presumably lower the 
intra-thoracic pressure. Given a Pplat of ≤30 cm H2O [40], this allows 
one to further increase the PEEP.

Work of Breathing (WOB)
1) O2 Consumption (VO2): “Reducing metabolic and ventilator 

demand [may] be among the most important of the unproven rules 
that guide management…..with the judicious use of sedative agents/
anxiolytics/antipyretics” [41]. In stable patients, the following apply: 
a) lowering the temperature (39.7 to 37.0 oC) reduces the VO2 (-18%) 
[42] and b) paralysis lowers the VO2 during the early phase of ARDS 
(CMV+NMB vs. CPAP, -18%) [43]. Thus, in the setting of acute 
cardio-ventilatory distress, paralysis and normothermia (≈35.5-37 
oC, e.g. by surface cooling) will enlarge this reduction in VO2 for a few 
hours, increasing a precarious cardio-ventilatory reserve.

2) Circulation: In the setting of acute tamponade in SV dogs, 23% 
of the CO is routed to the ventilatory muscles. In contrast, when the 
dogs are paralyzed, only 3% of the CO is routed to the ventilatory 
muscles [44]. These data should not be over-interpreted because a) 
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during acute cardio-ventilatory distress immediately upon arrival to 
the CCU, suppressing the WOB with NMB for a few hours makes 
sense to lower VO2 and b) when early severe ARDS is considered, the 
WOB should be fully minimized (see below) to allow one switching 
to SV, as early as possible.

3) Tidal volume: low pressure support? 

First, inspiratory work: in the presence of basal atelectasis 
(focal ARDS) or diffuse alveolar damage (diffuse ARDS), a high 
transpulmonary pressure is necessary to generate sufficient tidal 
volume and re-open the terminal airways closed at some point during 
expiration. Just setting the PEEP at an appropriately high level should 
limit closing-reopening of the alveoli (atelectrauma, inflammation) 
and lower the inspiratory work [45]. Given an appropriately high 
PEEP, the lung will function on the highest slope of the Pressure-
Volume (P-V) curve (“best” compliance [46,47]): when placed on its 
highest slope, the diseased lung needs lower inspiratory assistance 
[48-51] and lower PS [52-54].

Second, an acidotic patient in acute cardio-ventilatory distress 
generates a high transpulmonary pressure, a large Vt and a high 
RR before fatigue and ventilatory arrest. Carteaux observed Vt≈8-
14 ml.kg (mean=10.6 ml.kg) with RR≈30-40 (mean=36) in ARDS 
patients in which Non-Invasive Ventilation (NIV) failed [55]: this 
is the only rationale to paralyze the respiratory muscles during the 
stabilization of acute cardioventilatory distress to get immediate 
reduction of VO2.

Third, in the setting of early severe stabilized ARDS, active 
contraction of the diaphragm combined with high PS may generate 
a large transpulmonary pressure [53,54] and Vt [56]. Conventional 
weaning after ARDS uses high PS and low PEEP. By contrast, a) 
after control of acidosis, a normalization of Vt and RR is observed: 
this lowers WOB. b) we surmise that, after control of acute cardio-
ventilatory distress, but during the early phase of severe ARDS, 
“inverted” settings [57] are appropriate: high PEEP (see below), low 
PS set stringently (low inspiratory trigger; “expiratory trigger” set at 
<5-10% in severe restrictive disease as ARDS [58] at variance with 
>50% in obstructive disease [59]; automatic tube compensation [60]: 
“adapt the ventilator, not the patient” [5]). This will overcome the 
load generated by the valves, circuits (3-5 cm H2O) [61] and the 
tracheal tube [62] and unload the respiratory muscles (as shown 
by a minimized activity of the sternocleidomastoid muscle [63]). 
As ARDS is a restrictive disease (“baby lung” [64]), a Vt<6 ml∙kg-1 
leads to minimal over distension [48]. This is to be qualified as such 
a Vt exposes ≈30% of patients to hyperinflation [65]. Indeed, the 
objectives of protective ventilation under CMV (low driving pressure 
[66]/Vt [67]) apply equally to SV (low transpulmonary pressure; 
figure 1 of [52]).

4) Respiratory Rate (RR): A high RR is associated with failure of 
PS during weaning of ARDS patients [68] and during failure of NIV 
before intubation [55]. Therefore, a high RR should be stringently 
controlled: high VO2, acidosis, CO2 and agitation. Second, during 
weaning from ARDS, a high PO2 is associated with a low RR [69]. 
Therefore, the use of a FiO2 just sufficient for a SaO2 ≥85-90 or 88-
92%, is adequate under SV a) recovery from acute hypercapnic 
respiratory failure in the setting of established Chronic Obstructive 

Pulmonary Disease (COPD), b) CMV in the setting of early severe 
stabilized ARDS [24,70]. However the use of a FiO2 just sufficient for 
a SaO2 ≥85-90 or 88-92% is inadequate under SV, in the setting of 
early severe ARDS. Given SV, the hypoxic drive should be thoroughly 
suppressed, with a FiO2 aimed at a high SaO2 (≈98-100%) [69]. Under 
SV, the use of high PEEP (see below) will allow one to achieve high 
SaO2, firstly with a high FiO2 and later, after perennial alveolar 
recruitment, with a low FiO2.

5) Acidosis (H+): Severe metabolic acidosis leads to a high RR 
and large Vt. Therefore, acidosis should be thoroughly controlled 
(presumably pH >7.20-7.30 with a favorable trend in lactate 
concentration and CO2 gap) by any mean, such as lowering the VO2, 
adequate CO, improved microcirculation, surface cooling and/or 
Early Extrarenal Replacement (ERR), before switching to SV [71].

6) Capnia: Permissive hypercapnia used in the setting of status 
asthmaticus [16] has completely changed the goal of mechanical 
ventilation to oxygenation itself, with CO2 being partially neglected 
[64]. Nevertheless, high CO2 levels increase pulmonary impedance 
[72] in a setting where the incidence of RV failure is ≈25% despite 
“protective” ventilation [73]. In addition, hypercapnia increases the 
RR. Therefore, given the drawbacks of high PaCO2 [72], in the setting 
of early severe stabilized ARDS, PaCO2 should be maintained <60 mm 
Hg. Normothermia (35.5-37oC) helps. Furthermore, extracorporeal 
CO2 removal set on ERR [74] allows one to combine a low VO2, 
ultra-low Vt and near-normocapnia, making analytical management 
much easier (spontaneous ventilation: high PEEP-low PS; CMV: high 
PEEP-low driving pressure).

Peep
From an operational point of view, ARDS was very schematically 

viewed above as an oxygenation restricted to oxygenation disease. 
As O2 is 22 times less diffusible than CO2, high CO2 is rarely 
encountered [75]. Conversely, proning the patient is associated 
with a reduced PaCO2 in favorable cases. What does this imply? 
Atelectasis redistributes itself within minutes following proning 
[64]. Thus, atelectasis is not a fixed phenomenon. PEEP will improve 
oxygenation, irrespective of the mechanism in early ARDS (atelectasis 
vs. increased lung water vs. inflammation). Edema is of importance 
in non-survivors [76], making fluid restriction an additional tool at 
later intervals, after control of the acute cardio-ventilatory distress. 
Then, what is an appropriate PEEP? Given a low Vt under SV [53,56] 
or CMV [77], a “higher PEEP associated with low Vt is beneficial in 
severely hypoxemic ARDS patients when administered early in the 
course of ARDS and when ARDS is diffuse” [77]. A PEEP=22-24 
cm H2O is used when a FiO2=1 is needed [24]. This view needs to 
be qualified because a) emphasis on high PEEP in the setting of high 
FiO2 [24] was to suggest increased PEEP rather than relying on high 
FiO2 for extended intervals b) “focal” ARDS (basal atelectasis alone, 
acute hypoxemic non hypercapnic respiratory failure) requires a low 
PEEP, while diffuse ARDS requires a high PEEP [78] and c) in obese 
patients, focal ARDS requires a high PEEP to counteract the effect 
of the IAP on basal atelectasis [39,51] and to achieve adequate end-
expiratory transpulmonary pressure and suppress cyclical collapse 
(airway closure).

1) Esophageal catheter: The esophageal balloon catheter 
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(“balloon”) was described in spontaneously breathing upright 
volunteers [79]. Given the absence of the weight of the mediastinal 
organs, is trans-pulmonary pressure more readily usable in the 
“upright” spontaneously breathing ARDS patient [23]? If the PEEP 
is to be set using a balloon [80], one goal is to separate chest wall 
mechanics vs. lung i.e. optimize functional residual capacity of the 
lung itself (FRC; lung re-expansion) without over distension of the 
lung itself.

To avoid end-inspiratory over distension, the first option leads 
to an end-inspiratory transpulmonary pressure of ≈27 cm H2O 
(young spontaneously breathing healthy volunteers) [81]. Given an 
end-inspiratory transpulmonary limit of 25 cm H2O, this allows one 
to increase the PEEP to the highest possible level (from 18 to 22 cm 
H2O [82]) in a sub-group of patients presenting for Extracorporeal 
Membrane Oxygenation (ECMO), improve the P/F over 30 min and 
skip ECMO in 50% of the patients [82]. However, older subjects may 
only tolerate levels of transpulmonary pressure lower than 27 cm 
H2O, if reference [81] applies.

To suppress end-expiratory cyclic alveolar collapse, the second 
option sets end-expiratory transpulmonary pressure to 10 cm H2O 
(FiO2=1) and improves the oxygenation over 72 h as well as the 
outcome [83]. Finally, the ventilator generates pressure and volume 
data and allows one to calculate lung compliance and transpulmonary 
pressure during changes in PEEP without the balloon [84]: will this 
information allow the selection of the lowest PEEP with the highest 
compliance without a balloon?

2) Numbers: When the balloon is unavailable, “magic” numbers 
are the second best option. Specifically, before a CT scan, or when 
the Pflex cannot be determined on a P-V curve, the investigators 
use a high PEEP [78,85] of 10-16 cm H2O [86,87]. This level should 
be carefully adjusted as soon as possible (trial PEEP) to the lowest 
level. First, the PEEP is adjusted to the highest level tolerated by the 
RV (increasing PEEP, see § heart). Second, the trial PEEP should, at 
its lowest level (decreasing PEEP), generate a SaO2 of ≈98-100% to 
avoid hypoxic drive and increased RR in the setting of spontaneous 
ventilation [69]. The issue is not to fully reopen the lung [17,88] but 
rather to reduce a “penumbra” area around the atelectatic areas to 
increase the P/F from below 100 to above 150-200. This will allow one 
to extubate the trachea as soon as possible, i.e. infection and overall 
clinical status permitting. If, following recruitment maneuvers, a 
high PEEP reverts the derecruitment [89], how long should the PEEP 
remain high to improve P/F perennially? There are no published data 
on this issue: “Modification of respiratory system mechanics required 
a long time and, the changes likely reflect a progressive modification 
of the underlying pulmonary pathology, rather than the achievement 
of a steady state » [90]. Thus, this is a function of the extent of 
the disease: when the PEEP is lowered too early, de-recruitment 
occurs. Furthermore, in our hands, derecruitment is very difficult 
to revert, even if the PEEP is set back to high levels (PEEP≥15-20 
cm H2O) without recruitment maneuvers. When CMV is used [40], 
a high PEEP should be set with a Pplat <25-35 cm H2O, leading to 
a simultaneous improvement of the P/F, lowering of the Pplat and 
finally a lowering of the PEEP over 12-72 h [83,87]. When high PEEP-
low PS is used, improved P/F is observed with similar kinetics.

c) Intrinsic PEEP: The PEEP should be set according to possible 

pre-existing obstructive disease. In-deed, a high intrinsic PEEP 
(PEEPi) is observed in supine ARDS patients (up to 8 cm H2O [91]). 
Under SV, this generates a high expiratory work in addition to the 
high inspiratory work considered above. Therefore, under SV, the 
setting of the extrinsic PEEP should take into account the PEEPi of 
the considered patient, measured before switching to SV.

Which mode of ventilation is most suitable? While airway 
pressure release ventilation (APRV)+SV appears physiologically 
superior to PS [15,92,93], evidence-based epidemiology is lacking 
(https://clinicaltrials.gov/ct2/show/NCT01862016?term=richard+j
cm&rank=1). Regardless, our limited experience with APRV makes 
PS our present choice.

Sedation
In the setting of early severe ARDS, the stringent provision made 

for short (i.e. 48 h) [94,95] paralysis is too often by-passed. General 
anesthesia suppresses respiratory rhythm genesis, evokes deep 
sedation [96], delayed emergence, emergence delirium and, when 
combined with paralysis, myoneuropathy [97]. However,

1) Sedation can be almost entirely withdrawn with minimal side-
effects [98]; and

2) Only indifference to the tracheal tube and to the CCU 
environment (ataraxia, medical patient) and nociceptive stimuli 
(analgognosia, surgical patient) are required (“cooperative sedation”). 
Alpha-2 agonists evoke indifference to the environment in volunteers 
[99] and CCU patients [100] as well as an indifference to pain [101,102]. 
Therefore, midazolam/propofol and opiates, to be interrupted daily, 
are now irrelevant. Alpha-2 agonists should be considered, not 
during weaning, but as first-line sedative agents [103] during early 
severe ARDS [50,51], as soon as the acute cardio-ventilatory distress 
is controlled. Alpha-2 agonists evoke no respiratory depression [104] 
in volunteers [105, 106], no delayed emergence nor delirium. This 
explains the reduced length of intubation in a setting different from 
ARDS [107]. Under PS, provided the elevated WOB is analytically 
controlled (§ WOB), in the presence of a low threshold for inspiratory 
trigger, a high RR due to excessive triggering is not observed when 
alpha-2 agonists evoke -3<RASS<-1. Finally, in contrast to anesthetics 
that suppress the elastic recoil of the rib cage [21,22], the intact 
ventilatory mechanics observed in ambulatory hypertensive patients 
administered clonidine for decades shows that alpha-2 agonists do 
not suppress this recoil: may we speculate that sedation evoked by 
alpha-2 agonists does not suppress elastic recoil, does not lower the 
FRC and, thus, keeps the lung inflated ?

3) A “ceiling” effect is observed with high-dose dexmedetomidine/
clonidine, to be supplemented with neuroleptics, if needed [103,108]. 
Such a deep sedation evokes no respiratory depression. As soon as 
the P/F improves from below 100 to above 150-200, sedation will be 
easily lightened. Given an im-proved overall clinical status, this will 
lead to early extubation without the interruption of alpha-2 agonists, 
ease the tolerance to Non-Invasive Ventilation (NIV) [109,110] and 
early physiotherapy.

4) Alpha-2 agonists lower the hypothalamic set point for 
shivering [111], the VO2 [112] during weaning [113] and increase 
the mixed venous saturation [114] (“avoid the low PvO2 effect”), 
presumably increasing the margin of safety when very low PaO2 is 
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present. Therefore, normothermia (35.5-37oC) is easily achieved.

5) Alpha-2 agonists increase the levels of anti-inflammatory 
cytokines [115] and decrease the levels of pro-inflammatory cytokines 
[116], of possible relevance.

Conclusion
Our hypothesis is that CMV with paralysis is necessary in the 

setting of acute cardio-ventilatory distress or severe metabolic acidosis 
only [71]. Should the patient be switched from CMV to SV at 3, 6, 12, 
24 [6] or 48 h [94,95] after arrival to the CCU? The answer is “as soon 
as some improvement [is] observed, pressure support ventilation [is] 
started” [117]. In the setting of early, severe, diffuse ARDS, analytical 
management (circulation, position, normothermia, acidosis, CO2, 
high PEEP: 10-24 cm H2O range, low PS) should not be considered as 
absurd. With alpha-2 agonists as first-line sedatives [103], improved 
oxygenation can be observed over 12-72 h, as reported previously 
[4,50,51,71,118]. By applying our analysis to ≈30 severe ARDS 
patients, we observed a mortality of ≈5% and extubation within 3-6 
days after arrival at the CCU. As this non-randomized recruitment is 
presumably skewed, evidence-based documentation is necessary. Our 
analytical bundle implies an overal organ-by-organ and case-by-case 
approach and if serial assessments dictate, returning to the accepted 
practice (1) (CMV, paralysis [95] and (2) proning). 
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