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Abstract

Wound healing is a complex domain that needs to solve abundant 
parameters.  Changed protein concentration, pH effect on wound environment, 
mediators of immune system, and aging process are fight subjects of wound 
healing.  Therefore, in modern approaches to improve of challenges are tending 
to analytical techniques for lighting dark side. Research of genetic markers, micro 
RNAs expression or post-translational modifications of proteins was recently 
evaluated in wound healing.  In review article, we focused on some parameters 
of the healing system which are affected processes of wound healing and some 
analytical approaches which are using to find connect of the network.
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Introduction
A wound is described as the disruption of a tissue’s normal 

anatomical structure and function. It also signifies the destruction 
of the body’s natural defenses, which facilitates the invasion of 
microorganisms [1]. The intricate combination of matrix destruction 
and reconfiguration that occurs during wound regeneration 
necessitates [2] well regulated mechanisms that result in the healing 
of damaged tissues [3]. These procedures are fusions of intricate 
molecular and biological processes that result in proliferation, cell 
migration, and remodeling and extracellular matrix deposition of 
scar tissues [4].

According to the type of skin damage, potential underlying 
disorders (such as diabetes and peripheral artery occlusive disease), 
local wound factors and systemic mediators, healing processes are 
induced. Depending on how delicately the various elements are 
balanced, either a physiological mode of healing (healing of acute 
wounds) or a pathologically delayed mode of healing (healing of 
chronic wounds) takes place [5].

Acute (syn. physiological) wound healing is a Four-phased, 
coordinated process that includes the (i) Hemostasis phase, (ii) 
inflammatory phase, (iii) proliferative phase (neoangiogenesis, 
granulation, and re-epithelialization), and (iiii) remodeling phase 
[Extracellular Matrix (ECM) remodeling] (Figure 1).

During hemostasis, platelets clump together and a fibrin clot 
forms at the area of endothelial damage. By sticking to the damaged 
endothelium and releasing chemokines, platelets draw in the 
inflammatory phase’s cellular elements [6].

Following cutaneous injury, cytokines, chemokines, growth 
factors, and their effects on cellular receptors are the main mediators 
of the inflammatory phase. Various cell types, including granulocytes 
and macrophages, are attracted to the wound site by chemoattractant 
factors, which start the healing process. The wound milieu’s pH value 
gradients, which include proteinases, cytokines, chemokines, etc., 
may have a significant effect on cellular processes [7].

Following this, the proliferative phase that begins with an overlap 
in time. This phase includes re-epithelialization, granulation tissue 
production, and neoangiogenesis, as well as the formation of ECM. 

One of the most crucial steps in wound healing is neoangiogenesis 
because the increased metabolic activity during the proliferative phase 
limits the availability of nutrients and oxygen. After a suitable wound 
bed has been formed, an epithelial layer is applied to the wound 
surface, which encourages fibroblast proliferation and dramatically 
increased collagen synthesis and deposition. Epidermal keratinocytes, 
which are triggered and moved into the wound site starting from the 
wound margins, differentiate, proliferate, and migrate in order to re-
epithelialize [8].

Beginning a few days after the injury, the tissue remodeling phase 
can continue for up to two years. Different proteinases participate 
in this phase of coordinated wound healing. When compared to 
physiological conditions, the wound milieu itself, such as pH value 
variations during the various stages of wound healing, affects how 
these proteinases behave and how active they are [9].

Chronic wounds show inadequate repair processes that prevent 
the creation of a sustained anatomical and functional outcome in 
a reasonable amount of time [5]. Chronic wounds are described as 
wounds that do not heal physiologically, instead becoming stuck 
in an uncontrolled and self-sustaining phase of inflammation, and 
do not follow the well-known step-by-step process of physiological 
healing. This damages anatomical and functional integrity over a 
physiologically acceptable period of time [10].

Effect of pH on Wound Healing
Changes in pH can influence or be affected by the complicated 

process of wound healing at each stage [11-13]. According to early 
research, a chronic wound has a pH between 7.11 and 8.9 [14,15] and 
Compared to wounds with a pH closer to neutral, wounds with a high 
alkaline pH has a slower rate of healing [16].

During wound healing, the environment around acute and 
chronic wounds changes from being alkaline to neutral to acidic [17]. 
Since pH can be used as an indicator of how well a wound is healing, 
it can also be utilized as a diagnostic tool, according to various 
researchers [11-13,16].

Effect of pH on Skin Cells in Wound Healing
Changing of pH is affected skin cells behavior in during wound 

healing. Using  ex vivo and in vitro skin cell models, researchers 
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looked at how pH affected keratinocyte and fibroblast attachment, 
proliferation, and migration.Additionally, the effect of pH on 
keratinocyte differentiation was measured by the expression of 
cytokeratins, the proteins of keratin intermediate filaments found 
between epithelial cells, in particular cytokeratins 1 and 5. It was 
determined that low pH values promote a differentiated keratinocyte 
phenotype. Furthermore, the best pH range for fibroblast and 
keratinocyte is between 7.2 and 8.3, on the other hand the optimal 
pH value for ex vivo skin explants development was 8.4. Indicates 
that skin cells and explants reproduce and move at pH level above the 
physiological range [18].

Described how pH influences cell migration and how cell 
density creates changes in pH suited to healing: Studies have 
demonstrated that cellular proliferation is less susceptible to pH 
lowering in sparse chick embryo cell cultures than dense cell culture. 
Experiments on wounds showed similar outcomes, with low pH 
preventing cell migration. But those cells that migrated into the 
wound area proliferated just as quickly at low pH as they did at high 
pH, illustrating the combination impacts of pH and cell density 
[19,20].

Effects of Aging on Wound Healing 
The alterations in aging skin are a result of both intrinsic and 

extrinsic aging. The alterations in skin that take place in areas 
shielded from the sun without reference to external aggressors are 
referred to as intrinsic aging. Extrinsic aging is the result of long-term 
environmental exposure, especially to sunlight’s UV radiation, which 
causes cumulative alterations in the body [21]. Increased sensitivity to 
the environment, a decline in homeostatic capacity, and a cumulative 
loss of function are the overall effects of intrinsic and extrinsic aging 
[22].

Comparing older humans to younger ones, there is a noticeable 
decrease in cutaneous blood flow [23]. Age-related changes in blood 
flow are accompanied by a decrease in cutaneous lymphatic drainage, 
which impairs the ability to rid the wound of pathogens and also 
prevents wound contraction [24].

Age-Related Changes in Phases of Healing
Alterations in Hemostasis and Inflammation

With endothelial damage exposes collagen, which helps platelets 
attach to the damaged endothelium. Aged subjects have increased 
platelet adhesion to the endothelium [25,26].

Age also causes platelets to release more alpha-granules, which 
are composed of TGF-β, TGF-α, and Platelet-Derived Growth Factor 
(PDGF) [27].

Elderly endothelial cells release less nitric oxide, a vasoactive 
mediator [28]. As a result, the diapedesis of neutrophils is reduced, 
and capillary permeability is reduced at the site of damage. On 
the other hand, leukocytes exhibit an age-related increase in the 
secretion of and responsiveness to several inflammatory mediators 
[29,30]. Macrophage and B-lymphocyte infiltration into wounds is 
postponed in middle-aged and elderly mice using wound healing 
models. Aged animals similarly have a delay in T-lymphocyte entry at 
the wound bed, but the overall level is higher than in young animals. 
Lymphocytes from elderly animals exhibit a reduced proliferative 
response, a reduced number of naive cells, and an increased number 
of memory cells [31,32].

Alterations in Proliferation
In older animals, the proliferative response of fibroblasts, 

keratinocytes, and vascular endothelial cells is diminished [33,34]. 

Figure 1: Phases of acut wound healing; Blood bleeding or hemostasis, inflammation of wound, proliferation, and remodeling.
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Age-related delays can be seen in angiogenesis, collagen production, 
and re-epithelialization [31]. Dermal fibroblast size and number 
generally decline with age [35]. Additionally, maturated fibroblasts 
are representedless sensitivity to growth factors and have less 
replication potential than young fibroblasts [35,36]. Both in animal 
models and in human wounds, these changes cause an age-related 
delay in the healing of the wound [37,38]. In aged animals [39, 40] 
as well as humans [41,42], whole wound studies have revealed lower 
rates of epithelialization and contraction.

The process of angiogenesis is thought to be crucial for the best 
possible healing of wounds because the epidermis needs nutrients to 
move and multiply [43].

Alterations in Resolution
Collagenase activity is higher in young animals than in older 

animals, allowing for more collagen remodeling and turnover [44]. In 
older wounds, keloids, hypertrophic scars and other hyperproliferative 
wound-healing disorders are uncommon. This may be caused by 
lower amounts of circulating TGF-β, according to some studies [45]. 
In adults, severe scarring can be avoided by blocking TGF-, a protein 
that promotes the synthesis of collagen [46].

Have demonstrated that aged animals have diminished strength 
and gain wound strength more slowly than younger animals. It has 
been demonstrated that these findings also apply to human beings; 
incisional wounds in individuals older than 70 years old showed 
lower tensile strength than those in patients younger than 70 years 
old [47].Infection rates and medical consequences rise as a result of 
the delayed wound closure [48-51].

Analytical Approaches to Wound Healing
When trying to understand wound healing, it is important 

to monitor changes due to comorbidities (e.g., diabetes, vascular 
diseases). More biological materials are needed for these studies [52]. 
Analyzing wound fluid helps us understand the microenvironment 
of the wound.

In recent years, inflammatory mediators, growth factors, 
cytokines [53,54], proteases [55,56] and oxidative stress proteins 
[57] have been analyzed in wound fluid, and in this way the effects 
of proteins in different phases of wound healing have been tried to 
be characterized. However, since the mechanism underlying wound 
healing has not yet been fully elucidated, a diagnostic marker cannot 
be recommended in routine clinic.

In wound healing studies, immunoblotting, microbeads arrays, 
and immunoassays methods are used. These methods allow the 
analysis of a relatively small fraction of selected proteins.

With mass spectrometry based proteomics, a diagnostic point 
of view can be developed by detecting potential biomarkers that will 
allow us to monitor wound healing [58]. Proteins from different 
tissues can be used in these studies [59-60].

However, despite the large number of proteins, which are 
the handicaps of proteomic studies, issues such as insufficient 
concentrations and the predominance of abundant protein groups 
limit these studies [61,62].

A gold standard method cannot currently be recommended for 

reproducible analyzes of proteins that are modified or expressed/
depressed in wound healing and derived from wound fluid.

In addition, chronic ulcers, diabetic wounds and pathological 
features due to venous stasis ulceration cause delay in the healing 
process. At the pathological level, abnormal formations such as 
fibrotic responses and adhesions also occur. When we add the 
contribution of cytokines and enzymes, controlling and optimizing 
the physiological responses to wound healing becomes complicated. 
Therefore, analytical research methodologies developed are of great 
importance

Microdialysis for Following of Wound Healing
Microdialysis is a method used to analyze low molecular weight 

proteins from the extracellular interstitium. A semipermeable 
membrane is designed like a blood capillary (mimic) and inserted 
into the wound. Dialysate obtained as wound fluid is used for protein 
analysis in situ studies. [59,61,63,64].  Samples collected from a specific 
site can help explain a dynamic physiological and pathophysiological 
process. For this reason, samples taken from tissue, skin, brain, eye 
and liver by microdialysis method are increasingly used to understand 
the molecular mechanism [59, 61].

The samples consist of molecules that cross the semi-permeable 
membrane with a concentration gradient. In fact, although the 
biological activities of cytokines are high, their concentrations in body 
fluids are low [64]. Therefore, analysis of cytokines and chemokines 
is useful as a direct method. It can be said that the most important 
benefit of microdialysis is that it allows the removal of wound fluid 
from the same place with a non-invasive method and the continuation 
of sample collection during the healing process [64].

The resulting micro dialysate is subjected to further investigation 
with traditional analysis methods such as radioimmunoassay or 
Enzyme Linked Immunosorbent Assays (ELISAs) [65].

These analytical methods have some limitations. However, 
characterization of many molecules can be done with “omics” 
techniques. It makes it possible to analyze molecules <2 kDa with 
metabolomics, which is among the omics techniques [66].

Microdialysates collected from samples not from the skin, but 
especially from various tissues, can be applied to metabolomics 
techniques. Among these analytical techniques, separation methods 
such as mass spectrometry liquid and gas chromatography or Nuclear 
Magnetic Resonance (NMR) spectroscopy are used [67].

Omics for Following of Wound Healing
Because the complex molecular mechanisms of wound healing 

have not been fully elucidated, we need tools to optimize the analysis of 
the healing process. To understand the molecular pathways involved 
in wound healing and to see the cascading links of different stages 
of the healing process, we need to know the regulatory mechanisms. 
Regulatory mechanisms of wound healing include genes, proteins, 
microRNAs, metabolites and drug molecules. All these molecules 
interact with each other through chemical reactions. In addition, the 
concentrations and interactions of molecules increase the complexity 
of the healing process.

MicroRNAs (miRNAs): miRNAs are important post 
transcriptional regulators and are being investigated as potential 
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markers in the diagnosis and treatment of diseases. Our knowledge 
of miR-mediated gene regulation in wound healing is limited and 
“omics” research is gaining in importance.

miRs bind to the 3’ untranslated region of target mRNAs, causing 
destabilization and translational repression in mRNA [68].

Since miRNAs are regulators of the complex gene network, it has 
been suggested that they have essential biological functions in wound 
healing [69,70].

In addition, miR-based therapeutics constitutes a promising 
approach in the wound healing process [71].

Imbalance in the response to inflammation during wound healing 
may cause chronic inflammation and delay healing. It is suggested 
that miRNAs regulate inflammation in wound healing by target 
specific genes (Table 1). Table 1 lists 6 key mediators involved in the 
inflammation stage during wound healing and miRNAs regulating 
these proteins; TNF, transforming growth factor receptor 1, IL10, 
TNF receptor-associated factor 6, interleukin receptor-associated 
kinase, monocyte chemotactic protein 1, miR-125b, miR-128a, miR-
466l, miR-146a, and miR-124a [72].

TNF-α may have beneficial or detrimental effects on tissue 
repair depending on the concentration. Suppression of miR-125b 
expression controls TNF-α production [73]. miR-146 negatively 
affects Toll-Like Receptors (TLRs) by targeting TRAF and IRAK [74]. 
The gene expression of Macrophage Chemoattractant Protein (MCP-
1) increases approximately 70-times when the wound is formed [75]. 
IL-10, on the other hand, inhibits the pro-inflammatory response by 
inhibiting the STAT3-dependent pathway. On the other hand, when 
chronic and non-chronic wounds are evaluated to decide a biomarker, 
there was indicated that a lot of some İnterleukines (IL-) entity such 
as IL-11, IL-1A, IL-1B, IL-12B, IL-8, IL-15, IL-23. However, target 
gene analyzes of these interleukins have not been performed [76].

The route used for proteomic analysis of proteins in wounds is 
generally described in (Figure 2).

Potential biomarkers are determined by proteome analyzes 
applied for proteins that are involved in wound healing and that are 
expressed or depressed. Proteomics enables the analysis of specific 
proteins using Mass Spectrometry (MS), a fast and reliable method. It 
is possible to quantify the analytes in the analyzes made with MS, at 
the same time the analysis of protein mixtures is carried out sensitively 
[77]. Protein analyzes in biological tissue samples were presented in 
studies using the Imaging MS (MALDI IMS) technique [78].

While analysis is performed on minimal samples in biological 

processes, protein analysis is also possible in frozen or paraffin-fixed 
tissue samples, thus detecting the healing process of the damaged 
tissue. MALDI IMS studies on chronic wounds caused by pathological 
features are promising for therapeutic approaches [79].

Nanofibrous biomaterial for wound healing: Nano-
technological approaches emerge as one of the current methodologies 
in the healing of acute and chronic wounds [80].

Studies on the variety of synthetic or natural nanomaterials 
such as nanofiber mats and scaffolds in wound healing have come 
to the fore in recent years. The aim here is to develop a treatment 
approach that will assume the role of a blood clot in the wound area. 
In natural functioning, during the healing of the wound under in 
vivo conditions, fibrinogen, a plasma protein, is formed by blood 
coagulation, and then fibrin degradation process (fibrinolysis) occurs 
with enzymatic degradation [81,82].

Meanwhile, the fibrous blood clot behaves like an Extracellular 
Matrix (ECM) and fibroblasts and endothelial cells migrate to the 
wound site [83,84].

Because of this relationship, the use of nanoscaffolds as an 
accelerating factor in blood coagulation and wound healing, that is, 
the use of fibrinogen nanofibers, has gained importance. Although 
it is possible to use nanofibrous fibrinogen in different sizes with 
electrospining, this method has not yet become optimal because it 
can cause changes in the natural protein structure [85,86].

One of the important handicaps is that the biological function 
of nanofibrous scaffolds can change due to electro spinning and 

Cytokine miRNA References

TNFα miR-125b 28

TRAF6 miR146a 36

IRAK miR146a 36

TGF-βR1 miR128a 47

IL-10 miR-466l 50

MCP-1 miR124a 32

Table 1: miRNA regulation of major proteins involved with wound inflammation 
[72].

Figure 2: The routes of proteomic analysis as ordinary.
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protein degradation occurs. For the use of nanofibrous scaffold in 
wound healing, it would be appropriate to eliminate problems such 
as organic solvents and acidic conditions [87]. Changed total protein 
concentrations is other problem because of collection process of fluid 
of wound affects total protein concentration. We know that total 
protein concentration is not change just depend on sample collection 
method, meanwhile there is occurred protein oxidation. Oxidation 
on proteins of skin or fluid of wound is formed loss of total protein 
concentration, actually carbonylated proteins are formed after 
oxidation. 

Conclusion 
Wound healing process has complex molecular pathways, 

intermediators, and it is open to different pathological challenges 
at the same time. We need to understand all parameters such as 
pathological conditions, loss of total protein concentration, pH 
effect, changed aging condition to improve healing process of 
wound. Modern approaches are focused on omics technology. These 
approaches will allow the identification of biomarkers of molecular 
pathways.
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