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Abstract

We describe how tau mRNA is localized to the axon hillock and along the 
neuronal axon. We also reveal how proteins binding the 3’UTR region were 
discovered and how it was determined the way these proteins interact with tau 
mRNA, forming a ribonucleoprotein complex, as well as how this complex is 
stabilized, anchored, localized and translated in situ. Tau’s was the first mRNA 
molecule for which the mechanism of localization to the axon and its major 
function in maintenance of neuronal polarity were described.
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the axon? There was the possibility that a signal sequence directed the 
cellular transport while preventing its degradation. Tau 3´UTR has a 
length of 3,865 bases. The mRNA is quite stable, with a half-life of 20h 
[16]. Using UV-crosslinking, it was demonstrated that two proteins 
of unknown nature, with molecular weights of 38 and 43 kDa, bind 
to a 91 nucleotide sequence in the 3’UTR of tau mRNA [17]. It was 
hypothesized that these proteins were necessary for the stabilization 
of tau mRNA during transition from neuroblasts to post-mitotic 
neurons [18]. Nevertheless, it had to be proved that these proteins 
bind naturally to this nucleotide sequence. 

Previously, it had been demonstrated that MAP2 is localized 
to dendrites and that its mRNA possesses a signal sequence of 640 
nucleotides in the 3’UTR [19]. Similarly, the Hu proteins, which are 
highly conserved in vertebrates [20] and have been associated with 
neurological disorders due to their important roles in development 
and neuronal maintenance [21], bind in vitro to an AU-rich sequence 
and regulate mRNA degradation [22]. Furthermore, a member of the 
Hu family, HuD, contains three copies of RNA recognition motifs 
(RRM) [23,24]. Our group investigated whether HuD had the ability 
to bind to the 3’UTR in tau mRNA, as this protein shows a molecular 
weight of 38-43 kDa which is consistent with the previous findings 
from the UV-crosslinking experiments. Using two different cell lines: 
the rat pheochromocytoma PC12 cells [25] and the mouse embryonic 
carcinoma P19 cells [26], we proved HuD interacts with tau mRNA 
and determined its localization (Figure 1).

In PC12 cells, we demonstrated HuD was localized to processes 
emanating when cells were treated with nerve growth factor (NGF) 
[27] and, through UV-crosslinking, its binding to an uracil-rich 
region in tau 3’UTR. In P19 cells differentiated with retinoic acid, 
we observed a phenotype characteristic of a neuronal cell with the 
capacity for neurotransmitter release [28]. Upon transfection of a 
tau uracil-rich sequence coupled to green fluorescent protein (GFP), 
fluorescence was observed along the axon. 

After, we developed a method to immunoprecipitate (Figure 
2) the complex formed by HuD and tau 3’UTR using anti-HuD 
antibodies, purified by Chung et al. [29], in PC12 cells in culture. 
We also amplified those regions near the binding site by RT-PCR. 

Introduction
An mRNA consists of three main regions: a 5’-untranslated region 

(5’UTR), a coding region and a 3’-Untranslated Region (3’UTR). The 
degradation of an mRNA highly depends on the size and sequence of 
the 3’UTR. The degradation process of an mRNA is tightly regulated 
and does not represent a random process [1]. When an mRNA leaves 
the nucleus, it is translated and degrades according to the particular 
degradation signals present in the 3’UTR. Sequences such as 
UUAUUUAUU [2] are sufficient for an mRNA to quickly degrade in 
the cytoplasm. It has also been determined that AU-regions in c/v-fos 
are sufficient to destabilize the mRNA molecule [3]. Expression of a 
number of proto-oncogenes, cytokines and lymphokines is regulated 
during degradation by a junction protein called HuR [4]. 

In neurons, an interesting event takes place, going from 
stabilization to the localization of several mRNAs [5,6]. Neuronal 
localization of messenger ribonucleic acids (mRNAs) was first 
studied through in situ hybridization experiments for vasopressine 
[7], proopiomelanocortin [8], preproenkephalin [9] and oxytocin 
[10], among others. 

Axonal localization of tau mRNA
The study of subcellular mRNA localization began with 

Hirokawa’s studies on tau mRNA during brain development in the 
rat, in 1991 [11].

Neurons typically consist of a cell body or soma, dendrites and 
an axon, and thus there was a need to identify those molecules 
involved in cell polarity. Previous observations had shown that at 
least two proteins participated in neuronal polarity: tau and MAP2 
[12]. Immunohistochemical analyses revealed protein tau localized 
to axons and MAP2 was confined to dendrites [12]. Ginzburg’s 
studies using in situ hybridization demonstrated the segregation of 
tau mRNA to the axon during neuronal development [13] and its 
association to microtubules [14]. Protein tau has the main function 
of stabilizing microtubules, thus contributing to the maintenance of 
neuronal polarity in the axonal region [15]. 

The essential question then was: how is the mRNA localized to 
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Mutations to this site prevented immunoprecipitation of the complex 
and therefore the amplification of regions near the binding site. With 
these experiments, we demonstrated HuD binds naturally to this 
uracil-rich site concluding that HuD proteins were able to stabilize 
tau mRNA and keep it in the cytoplasm for about 20h. 

with the protein complex involved in the in situ translation [34] made 
us the first to demonstrate mRNA axonal stabilization, transport, 
localization and in situ translation [37].

The implications of tau localization
Tau protein participates in the maintenance of neuronal polarity 

[13] and axonal transport by binding to microtubules, providing 
stability and shaping axonal morphology. When tau expression 
is inhibited, the axon retracts [27]. Efficient axonal transport of 
synaptic vesicles and organelles such as mitochondria allows the 
correct functioning of synaptic processes. It has also been shown 
that tau mRNA was co-localized in the distal part of the axon and 
growth cone, with the elongation factor 1a, which is a component of 
the translation machinery [38].

A number of studies have demonstrated that hyperphosphorylation 
of a truncated form of tau (pTau) prevents microtubule assembly [39] 
and localizes tau to the cell soma and degenerated neurites [40]. Upon 
tau hyperphosphorylation, the axon retracts and synapses are lost 
[41]. Mislocalization of pTau not only causes loss of synapses [42,43] 
but the accumulation of oligomers in dendritic spines which results in 
decreased long-term potentiation following internalization of AMPA 
receptors [42,44], thus affecting neuronal plasticity [45] (Table).

Figure 1: In the scheme shown as tau mRNA interacts with various molecules 
for transport to the axon. The HuD protein binds to a specific region of uracils 
in the 3’-UTR for this complex is subsequently anchored to the kinesin KIF3A 
and transported on the microtubules. Arriving at the right place, the complex 
disassembles the messenger of tau for translation.

Figure 2: In this scheme briefly shows how complex formation HuD and tau 
messenger by immunoprecipitation and RT-PCR was determined.

Moreover, in P19 cells we showed the co-localization of tau 
mRNA and tau protein in the axon [30]. A group of proteins called 
kinesins had been identified in the squid’s giant axon [31] and 
Hirokawa’s studies on the motor patterns of kinesins along the 
microtubules [32,33] lead us to hypothesize that the HuD-tau mRNA 
complex was anchored to a kinesin. We proved this hypothesis using 
antibodies, showing that kinesin KIF3A anchors HuD and transports 
the HuD-tau mRNA complex to the axon [34]. When KIF3A 
expression was inhibited, the complex did not reach the axon. We 
had then completed the puzzle on how tau mRNA reaches the axon: 
tau mRNA is translated on the site of localization [34] and, in order 
to be translated in situ, tau mRNA has to be transported to the axon 
for which HuD protein binds to the uracil-rich 3’UTR in tau mRNA, 
serving as an anchor protein to kinesin and stabilizing the mRNA 
molecule so that translation can take place when required within the 
relatively long period of tau mRNA half-life. 

We also investigated other messenger molecules that might 
localize to the axon. Using bioinformatics tools, we identified a 
number of mRNAs with uracil-rich 3’UTRs very similar to that in tau 
mRNA that could also be found in the axon [35,36].

Our findings on tau localization in the neuronal axon together 

Tauopathies Reference

Alzheimer Disease [46]

Argyrophilic grain dementia [47]

Corticobasal degeneration [48]

Creutzfeldt-Jacob disease [49]

Dementia pugilistica [50]

Down´s syndrome [51]

Frontotemporal dementia [52]

Myotonic dystrophy [53]

Niemann Pick disease, type C [54]

Pick disease [55]

Postencephalitic parkinsonism [56]

Progressive supranuclear palsy [57]

Table 1: Abnormal localization and hyperphosphorylation of tau, can lead to a 
spectrum of diseases known as tauopathies.

Conclusion
The demonstration of tau mRNA axonal localization broke 

with the myth that translation is a process exclusively taking place 
in the neuronal soma. Tau mRNA transport is essential for efficient 
neuronal function and maintenance of cell polarity. When tau mRNA 
is not properly localized to the axon, inefficient neurotransmission 
at the dendrites and axonal protrusion can be observed, leading to 
interruptions in transmission of the nerve impulses affecting pre-
synaptic as well as post-synaptic neurons.
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