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Abstract

Today, Neurodegenerative Diseases (NDs) constitute one of the most 
significant issues in public healthcare. One of these NDs, Alzheimer’s disease 
(AD), affects more than 24 million people worldwide. Scientists all over the world 
are searching for biomarkers that are vital for ND pathogenesis and diagnosis. 
It seems that one of these promising biomarkers might be microRNA (miRNA), 
whose biosynthesis is understood quite well.

Currently known human miRNAs (~2600) are involved in numerous 
physiological and pathological processes. Recent studies have sought specific 
miRNAs that are significant for the pathogenesis and diagnosis of NDs. Most 
miRNAs are common for many NDs, however, few seem to be specific to 
individual diseases: AD (e.g. let-7f, miR-125b, -193b), Parkinson’s disease (e.g. 
miR-19b, -34b/c, -133b), and frontotemporal dementia (e.g. miR-132, -212).

It seems that finding specific miRNAs for individual NDs may contribute to 
early and certain diagnosis and to introducing effective therapy.

Keywords: miRNA; Neurodegeneration; Alzheimer’s disease; AD; 
Parkinson’s disease; PD

diagnostic tools are not able to detect early changes that take place for 
years prior to the actual symptoms, which manifest themselves when 
most of the brain damage has already been done [2].

Attempts to explain the pathogenesis of neurodegenerative 
diseases via genetic mutations were not entirely fruitful and researchers 
realized that there must be another level of neuronal homeostasis 
regulation [2]. Another piece of the puzzle was uncovered along with 
sequencing of the human genome, when it turned out that more 
than 95% of human cellular RNAs are noncoding RNAs (ncRNAs) 
[3]. These small molecules seem to be plentiful in the human brain 
and in other parts of the nervous system; later on it was shown that 
they control its proper function and development [4]. Although 
previously underappreciated, ncRNAs have proved to be pivotal in 
degenerative processes, hence neurodegeneration may be regarded as 
an “RNA disorder” where one class of ncRNAs, namely microRNAs 
(miRNAs), seems to play the leading role [2].

miRNAs are a conserved group of short (about 22 nucleotides 
(nt)), single-stranded RNA molecules [5] that play a significant role 
in “fine-tuning” gene expression by semi-complementary hybridizing 
to mRNA and suppressing its effective translation [6].  Since their 
discovery in 1993 by Lee et al. [7], miRNAs have become one of the 
mostly researched groups of small noncoding nucleic acids. There 
were over 35 thousand records on PubMed as of September 2014 
(www.pubmed.org), and information on miRNAs is being gathered 
in specialized databases, e.g. at www.mirbase.org, whose most recent 
version (21st edition; June 2014) contains information on nearly 2600 
sequences of mature human miRNAs.

To select relevant studies for this review, the authors conducted 
multiple searches through public databases, including PubMed, 
Scopus and Google Scholar, by using the following search strategy: 
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Introduction
Neurodegenerative Diseases (NDs), including Alzheimer’s disease 

(AD) and Parkinson’s disease (PD), are a non-homogeneous group of 
various disorders affecting the Central Nervous System (CNS), mostly 
by excessive apoptosis of neurons in diverse locations of the human 
brain. Both the region and neuron types that are affected determine 
the nature of the cognitive, behavioral and motor deficits, which are 
fairly specific to each disease. Moreover, the significant heterogeneity 
of clinical symptoms of NDs makes a definitive diagnosis feasible only 
upon a postmortem histopathological examination of brain tissue.

NDs have become one of the most significant public health 
issues in recent years, since 24 million people are suffering from AD 
worldwide and the number of patients is expected to double in the 
next 15 years [1]. Yet current knowledge is still incomplete regarding 
the genetic basis underlying changes taking place on both a molecular 
and cellular level. As a consequence, there are no available therapies 
that would effectively modify the disease, and contemporary 
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(“Alzheimer’s disease” or “AD”, or “Parkinson’s disease” or PD, 
or “Frontotemporal dementia” or “FTD”) and (“microRNA” or 
“miRNA”) and (“biomarker” or “SNP”, or “genetic polymorphism” 
or “mutation”). The last search was performed in September of 2014. 
A subsequent search through review articles and references facilitated 
finding additional eligible studies.

Role of miRNA in physiological conditions
Biosynthesis of miRNA

The first step of miRNA biosynthesis is RNA polymerase II-
mediated transcription of primary miRNA (pri-miRNA) either from 
independent miRNA genes or the introns of protein-coding mRNAs 
[8]. Similarly to coding mRNAs, pri-miRNAs are polyadenylated and 
their expression is regulated by transcription factors [9].

pri-miRNAs tend to fold into secondary structures containing 
imperfectly base-paired stem loops which are subsequently cleaved 
into about  70-nucleotide hairpins of premature-miRNAs (pre-
miRNAs) by the nuclear complex RNase III type endonuclease 
Drosha and the DGCR8 protein [8]. Alternative pathways have also 
been described, e.g. pre-miRNAs may bypass the Drosha/DGCR8 
step and be synthesized from very short introns (mirtrons) as a result 
of debranching or splicing [8,10].

pre-miRNAs, after processing by the Drosha complex, are 
transferred through the nuclear membrane to the cytoplasm via a 
Ran-GTP-dependent mechanism by Exportin-5 [8]. Outside the 
nucleus, pre-miRNAs are cleaved close to the terminal loop by the 
second RNase III-type enzyme, a complex of Dicer and its cofactor 
TAR RNA-binding protein 2, thus giving RNA duplexes of roughly 
22 nt [8]. The newly created short RNA duplexes bind to a glycine-
tryptophan repeat-containing protein of 182 kDa and an argonaute 
protein forming the miRNA-Induced Silencing Complex (miRISC) 
[11]. Next, one of the two strands, the so-called “passenger miRNA” 
(also known as “complementary star-form miRNA”, “miRNA*” or 
“miRNA-3p”), is released, while the other strand, designated as the 
“guide strand”, “mature miRNA”, or “miRNA-5p”, remains within 
miRISC [12,13]. Current studies have implied that both arms (3’ and 
5’ for -3p and -5p, respectively [14]), of the pre-miRNA hairpin can 
give rise to mature miRNAs [15].

Full miRISCs recognize target mRNAs by hybridizing the seed 
region of miRNA (between the 2nd and 8th nt of the miRNA) to the 
complementary region in the 3’ untranslated region of mRNAs (3’-
UTR) [16-18]. Bounding miRISCs to mRNAs inflicts translational 
repression [11].

Current studies have highlighted that the down-regulation effects 
of miRNAs/miRISCs occur mostly through mRNA degradation 
rather than translational repression [19]. Moreover, recent data 
show that efficient repression requires the presence of typically > 100 
copies of miRNA per cell [20]. Hence, poorly expressed miRNAs may 
play little or no part in adjusting gene expression [21]. Additionally, 
molecular sponges may bind free miRNA and prevent hybridization 
to mRNA targets [22,23].

Various functions of miRNA 
miRNA research on the mammalian brain started in 2003, 

when Krichevsky et al. conducted microarray studies and showed 

significant changes in miRNA levels during brain development 
[24]. Next-generation sequencing as used by Landgraf et al. in 2007 
constituted another leap which allowed identifying differences in 
miRNA expression in various cell types and parts of the brain [25].

Today, miRNAs are believed to take part in both neuronal and 
brain development as well as in many physiological processes. The role 
of miRNA in developing neurons was proven by Yoo et al. in 2011. 
They discovered that miR-9* and miR-124 induce compositional 
changes of SWI/SNF-like BAF chromatin-remodeling complexes 
and control multiple genes regulating neuronal differentiation and 
function. They showed that expression of miR-9/9* and miR-124 
in human fibroblasts induced (further augmented by Neurogenic 
differentiation factor 2) conversion into neurons. In their experiment 
the addition of ASCL1 and MYT1L transcription factors enhanced the 
speed of conversion and differentiation but was not alone-sufficient 
to trigger the conversion [26].

In physiological conditions, miRNAs act as expression controllers 
and are responsible for maintaining proper levels of various proteins 
in cells [27]. miRNA genes are not translated into proteins, instead 
they usually bind with the 6-nucleotide long semi-complementary 
seed sequence to the 3’-UTR and sporadically to the 5’-UTR or coding 
regions of target mRNAs [19], thus inducing gene silencing or, rarely, 
over-expression [23]. Bioinformatic analyses show that miRNAs 
may regulate the expression of over 60% of all human protein-
coding genes [28,29]. MiRNAs are involved in countless biological 
processes, such as development, differentiation, and growth [6,15,30]. 
What has been shown lately is that a single miRNA molecule interacts 
with numerous mRNAs, and mRNA expression may be regulated by 
various miRNAs, thus starting a huge net of co-interactions [31-33]. 
miRNAs are mostly considered to “fine-tune” gene expression and to 
regulate development and tissue homeostasis [34].

It has been found that miRNAs are also involved in synaptic 
plasticity, as shown by Gao et al. They investigated SIRT1, sirtuin 1, 
a gene having systemic roles in cardiac function, DNA repair and 
genomic stability. Recent studies suggest that SIRT1 plays a role in 
normal brain physiology as well as in neurological disorders. Gao et 
al. also found that proper activity of SIRT1 increases, whereas its loss-
of-function impairs synaptic plasticity via a microRNA-mediated 
mechanism involving CREB and miR-134. They also showed that 
SIRT1 limits the expression of miR-134 via a repressor complex 
containing transcription factor YY1. Overexpression of miR-134 
has been shown to lower the levels of CREB and the brain-derived 
neurotrophic factor, thus impairing synaptic plasticity, which is the 
key mechanism controlling memory [35].

Other examples of miRNA involved in the function and 
development of neurons and the CNS are: miR-9 – responsible for 
neuronal differentiation, formation of the cortex, neurogenesis 
and brain development; miR-124 – controlling serotonin synaptic 
facilitation, neuritis development, neuron differentiation; miR-125b 
– adjusting spine width, dendritic branching and weakening synaptic 
transmission; miR-132 – inducing neural outgrowth, regulating 
dendritic complexity, spine width, stimulating synaptic transmission; 
miR-137 – inhibiting spine development and maturation as well 
as inducing proliferation of neuronal progenitor cells; miR-138 – 
regulating the size of the spine; miR-375 – repressing the density of 
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dendrites; and miR-379/410 cluster – inhibiting dendritic outgrowth 
[36]. Further miRNAs, such as let-7 and miR-9, have been described 
as stimulating differentiation, while miR-25 has been shown to induce 
the proliferation of neural stem cells [37].

Various miRNA-mediated mechanisms of neuronal 
damage in neurodegenerative diseases

miRNAs are probably associated with numerous pathological 
processes, such as response to oxidative stress, cell cycle disorders, 
neuroinflammation, clearance of pathological proteins and 
cholesterol trafficking. All of these contribute to the development of 
NDs (see Figure 1).

Oxidative stress responses have been observed in postmortem 
ND brains and in many rodent mouse models of NDs [38]. Oxidative 
stress in NDs is the center of a complex interaction network affecting 
DNA repair, proper protein folding, aggregation and clearance 
of damaged proteins, membrane lipid peroxidation and calcium 
homeostasis [39]. Reactive Oxygen Species (ROS) are principally 
generated by mitochondrial respiration and inflammation, thus 
creating an association between oxidative stress, mitochondrial 
dysfunction and neuroinflammatory responses [38]. Recent papers 
indicate that the role of miRNA is particularly visible in response to 
physiological as well as pathological stresses [40-42].

A study by Narasimhan et al. showed a connection between ROS-
dependent miR-153 and NDs. They investigated an environmental 
toxin, paraquat, which may increase the risk of developing PD by 
damaging Dopaminergic Neurons (DNs). They performed Real Time 
Quantitative PCR (RT-qPCR) analysis which revealed that paraquat 
significantly increased the expression of brain-enriched miR-153 
with an associated decrease in nuclear factor Nrf2. The transcription 
initiator ARE involved in redox balance is activated via binding to 
Nrf2, which suggests a critical role for ROS-mediated miR-153-Nrf2/
ARE pathway interaction in paraquat neurotoxicity on DNs [43].

The pivotal gene controlling apoptosis, TP53, has been found to 
be mutated in several cases of AD [44]. Moreover, it has recently been 
shown that the p53 protein, a transcript of the TP53 gene, regulates 
the expression of several miRNAs, e.g. the miR-34 family. Ectopic 

expression of miR-34s inhibits proliferation, migration, invasion and 
metastasis of various cancer cells. On the other hand, miR-34 plays 
an important role in aging, stem cell differentiation and neuronal 
development [45]. The work of Zovoilis et al. identified miR-34c 
as a negative limit of memory consolidation and showed that miR-
34c levels are elevated in the hippocampus of AD patients and 
corresponding mouse models. Moreover, blocking miR-34 activity 
restored learning ability in the studied animals [46]. Braun et al. 
used array hybridization to show that p53 induces other microRNAs, 
namely miR-192 and miR-215, thus leading to their up-regulation. 
Alternatively, miR-192 and miR-215 can each contribute to enhanced 
cyclin-dependent kinase A1 and cyclin-dependent kinase inhibitor 
p21 levels, thus promoting neuronal cell colony suppression, cell cycle 
arrest and increased cell movability. These effects seem to depend on 
the presence of wild-type p53. miR-192 and miR-215 seem to induce 
p53-dependent apoptosis and cell cycle arrest through p21 buildup 
[47].

Zhao et al. have shown that TREM2 is down-regulated in AD, 
and its 3’-UTR may also be targeted by miR-34a, which was shown 
to be regulated by NF-кB [48]. TREM2 is thought to outline native 
immune and phagocytic responses that contribute to inflammatory 
neurodegeneration [49].

Other NF-кB-sensitive miRNAs have been studied by Alexandrov 
et al. using a highly sensitive LED-Northern dot-blot assay. They 
showed that several miRNAs, namely miRNA-9, miRNA-125b, 
miRNA-146a, and miRNA-155, were present in the cerebrospinal 
fluid and extracellular fluid of AD patients. They suggested 
involvement of the studied miRNAs in the modulation of neuronal 
proliferation in the CNS as well as an association with progressive 
spreading of inflammatory neurodegeneration [50].

These data suggest that in AD, memory impairment may 
be mediated by the miR-34/TP53 pathway through excessive 
neuron apoptosis, but also through miRNA/NF-кB-mediated 
neuroinflammation. 

Microglia, the immune cells of the CNS that protect it 
against pathogens, play an important role in neuroinflammation. 
Dysregulation of microglial activity may result in a prolonged 
proinflammatory state and in subsequent neurodegeneration [51]. 
In 2013, Jayadev et al. found that miR-146, a negative regulator of 
the monocyte pro-inflammatory response, is constitutively down-
regulated in mice microglia with dysfunctional presenilin 2 [52], 
whose mutations were shown to condition autosomal dominant AD 
[53,54].

Microglia may also be activated by ROS, initiating the 
above-mentioned transcription factor p53 which stimulates glial 
proinflammatory functions [55]. Recently, the Jayadev group 
identified a new miRNA/p53-dependent pathway that modulates 
functional differentiation of microglia both in cell culture and in 
vivo. They showed that miR-34a -145 and -155 are regulated by 
p53 and negatively regulate the c-Maf transcription factor and its 
transcription activator Twist2. They suggested that p53 activated by 
ROS and oxidative DNA damage may induce microglial-mediated 
neuroinflammation [56].

The main component of AD associated with senile plaques is 

Figure 1: Factors important for pathogenesis of neurodegenerative diseases.
Abbreviations: Aβ: β-amyloid; AD: Alzheimer’s disease: ASN: α-synuclein; 
FTD: Frontotemporal Dementia; miR: MicroRNA; p53: Tumor Protein 53; PD: 
Parkinson’s disease; ROS: Reactive Oxygen Species
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amyloid β (Aβ), a 40 (Aβ40) or 42 (Aβ42) amino acid peptide [57]. It 
is produced by proteolytic cleavage of the Amyloid Precursor Protein 
(APP) performed by two proteolytic enzymes: β- and γ-secretase.

According to Liu et al., the expression of APP is controlled 
by miRNA. They used bioinformatic analyses to predict that APP 
3’-UTR is a potential target of miR-193b. The results indicated that 
overexpression of miR-193b could reduce the efficiency of mRNA 
translation, thus diminishing the expression of APP. By using 
luciferase assay they identified the miR-193b binding sites in APP 
3’-UTR. Furthermore, they measured the concentration of Aβ42 in 
the cerebrospinal fluid and the expression of exosomal miR-193b, 
and confirmed a negative correlation between these biomarkers [58]. 

Another interesting study was performed by Augustin et al., who 
used in silico analysis of ADAM10, a gene coding an active unit of 
α-secretase [59], to search for miRNAs involved in its regulation. 
They found two promising candidates, namely, miR-107 and miR-
103. It seemed that both miRNAs reduced the expression of ADAM10 
as shown by reporter assay [60]. These findings were confirmed by 
Leidinger et al., who used the RT-qPCR approach to show that miR-
107 and miR-103 were down-regulated in the peripheral blood of 
both AD and PD and schizophrenia patients [61].

Beta-site APP cleaving enzyme 1 (BACE1) is an active unit of 
β-secretase involved in Aβ formation. Increased BACE1 expression is 
a significant risk factor for sporadic AD [62]. The study of Wang et al. 
showed that according to bioinformatic predictions, BACE1 3’-UTR 
possesses several binding sites of miR-107. Cell culture reporter assays 
confirmed this suspicion. The study was validated by a correlation of 
miRNA profiling, in situ hybridization, and Affymetrix microarrays, 
and showed that BACE1 mRNA levels tended to rise as miR-107 levels 
decreased with the advancement of AD [63]. This negative correlation 
was convergent with the results of Nelson et al. [64].

Zhu et al. found that BACE1 3’-UTR is also targeted by miR-195. 
They validated the study by luciferase assay on HEK293 cells. Their 
study also demonstrated that miR-195 is capable of decreasing Aβ 
levels, therefore this may be an opportunity for future AD treatment 
[65]. Another miRNA associated with BACE1, namely miR-339, was 
found by Long et al. They identified two distinct miR-339-5p target 
sites in BACE1 3’-UTR by in silico analyses. Through a series of 
experiments they demonstrated a negative correlation between miR-
339 and BACE1 mRNA. This association was abolished by mutation 
in target sites. The synthetic mimic of miR-339 significantly inhibited 
expression of the BACE1 protein in human primary brain cultures 
and human glioblastoma cells. They also found that miR-339 levels 
were significantly lowered in AD patients’ brains as compared to 
controls [66].

Another interesting discovery was made by Shioya et al. They 
used RT-qPCR to find significant down-regulation of miR-29a in 
AD brains. Subsequently, they performed a database search and 
identified the potential gene target, namely NAV3. Further evaluation 
confirmed elevated levels of NAV3 mRNA in AD brains. NAV3 
down-regulation via miR-29a was verified by luciferase reporter 
assay. By immunohistochemistry they also showed that NAV3 
protein expression was visibly higher in the degenerating neurons of 
AD patients’ brains [67].

The other mechanism involved in neuronal loss is dysregulation 
of cholesterol metabolism in the brain. This sequence of biochemical 
reactions has been associated with many neurodegenerative 
disorders, especially AD. Specifically, rare variants of genes involved 
in cholesterol efflux (ABCA1 and APOE) were suggested to play a role 
in sporadic AD [68,69]. 

Adlakha et al. showed that miR-128-2 is a pro-apoptotic 
regulator of ABCA1 and ABCG1. This complex interaction network 
is mediated by SREBP and RXR. miR-128-2 increased the expression 
of SREBP2 and decreased the expression of SREBP1 in various cell 
lines. Moreover, miR-128-2 lowered the protein and mRNA levels 
of ABCA1, ABCG1 and RXRα by direct hybridizing to 3’-UTRs of 
corresponding genes [70]. Other miRNAs, such as miR-144-3p, miR-
145-5p, miR-106b-5p, miR-33-5p, and miR-758-5p, have also been 
shown to regulate the expression of ABCA1 [71-77].

Frontotemporal Dementia (FTD) is rather seldom and a poorly 
understood cause of cognitive impairment. On the other hand, 
standard dementia treatment may worsen the condition, hence the 
need to develop new therapeutic approaches. A subtype of FTD with 
TDP-43 inclusions (FTLD-TDP) is associated with mutations in the 
GRN causing a decrease in progranulin levels. Additionally, variants 
in TMEM106B were linked to FTLD-TDP. A study by Chen-Plotkin 
et al. showed that TMEM106B expression levels were increased in 
the FTLD-TDP brain and were controlled by miR-132 and miR-212 
[78]. These findings show new directions for the development of miR-
based therapies in FTLD-TDP.

The loss of brain DNs responsible for the development of PD 
occurs in the presence of, for example, intracellular inclusions, namely 
Lewy bodies [79], whose main component is α-synuclein (ASN). In 
a healthy brain, active ASNs form tetramers which constitute the 
functional tertiary structure [80]. Even a slight misbalance in ASN 
metabolism may lead to its aggregation and to toxic effects to DNs. 
This process may be promoted by mutations in parkin and α-synuclein 
genes [81,82] as well as in leucine-rich repeat kinase 2 (LRRK2) 
[83]. Moreover, it has recently been shown that the metabolism of 
ASN may be “fine-tuned” by various miRNAs [84]. By a series of 
mouse cell culture experiments, Junn et al. demonstrated an inverse 
correlation of ASN expression and miR-7 levels [85]. These data were 
convergent with the results of Doxakis, who also found that miR-153 
is another ASN repressor. He used luciferase-transfected HEK293 
cells to validate the study [86].

Cho et al., in their work from 2013, showed that expression 
of another gene involved in PD pangenesis, namely LRRK2, may 
be regulated via the miRNA network [83]. It was demonstrated 
that over-expression of LRRK2 may accelerate ASN-mediated 
neurodegeneration, while LRRK2 silencing may lead to ASN-induced 
neuropathology [87]. Several studies have associated LRRK2 with 
familial PD [88,89], yet there are others which tie this kinase with 
sporadic PD. Cho et al. showed that miR-205 was significantly under-
expressed in the frontal cortex of sporadic PD patients. They also 
demonstrated that miR-205 binds to LRRK2-3’UTR, thus leading to 
its down-regulation [83].

Other evidence of miRNA involvement in ASN regulation was 
presented by Wang et al., who found that miR-433 may be linked 
to the accumulation of ASN by increasing expression of FGF20 both 
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in vitro and in vivo. They showed, by luciferase assay, that down-
regulation of miR-433 and polymorphism in FGF20-3’UTR may 
raise the FGF20 protein level, followed by increased expression of 
ASN [90].

Kim et al. discovered that miR-133b is expressed mainly in 
midbrain DNs and is deficient in PD patients. miR-133b regulates the 
maturation and function of midbrain DNs within a negative feedback 
loop that includes the paired-like homeodomain transcription factor 
Pitx3 [91].

A study by Miñones-Moyano et al. identified two more miRNAs 
to be down-regulated in the postmortem brains of PD patients, 
namely miR-34b and miR-34c. Their work also demonstrated the 
negative correlation between these two miRNAs and parkin as well 
as DJ1 proteins. This may induce oxidative stress and dysfunction of 
mitochondrial metabolism in affected brain areas [92].

A recent study by Alvarez-Erviti et al. identified six miRNAs 
that were over-expressed in the brains of postmortem PD patients, 
namely, miR-21-3p, -26b, -106a*, -224, -301b, and -373-3p. The 
authors performed a bioinformatic prediction which showed putative 
targets in hsc70 and LAMP-2A, previously linked to PD. Luciferase 
assay confirmed that miR-26b, -106a*, -301b, and miR-21-3p, 224, 
373-3p may down-regulate hsc70 and LAMP-2A, respectively [93].

Cardo et al. characterized the expression of miRNA in the 
substantia nigra of 8 postmortem PD and 4 healthy subjects 
using TaqMan low-density arrays for 733 human miRNAs. They 
found 10 down-regulated and one over-expressed miRNA (check 
Table 1). Subsequently, they performed a bioinformatic analysis 
predicting that miR-135b could bind to genes implicated in several 
neurodegenerative pathways [94].

Single nucleotide polymorphisms and miRNA 
dysregulation in neurodegenerative diseases

The dysregulation of miRNA-mediated pathways may be 
associated with numerous variants in miRNA-coding genes as well 
as miRNA targets. Cui et al. studied two polymorphisms in miR146a, 
namely, rs2910464 and rs57095329, in 292 AD cases and 300 healthy 
controls. They found that the AA genotype of rs57095329 led to 
significantly higher neuroinflammation associated with miR-146a 
expression than the GG and GA genotypes of rs2910164 in peripheral 
blood mononuclear cells [95]. Delay et al. investigated the relationship 
between several miRNAs (miR-24, -186, and -455) and nicastrin – a 
subunit γ-secretase involved in Aβ generation. Using luciferase-
based assays, they demonstrated that rs113810300 and rs141849450 
SNPs in nicastrin 3’-UTR affected its miRNA-mediated repression. 
Notably, rs141849450 completely eliminated the miR-455-mediated 
repression of nicastrin [96].

miRNA Source Change Size of group References
Alzheimer’s disease

miR-9, -125b, -146a, -155 CSF, BD-ECF Over-expression 3P, 3C Lukiw, [121]
miR-34a, -181b PBMC Over-expression 16P, 16C Schipper et al., [110]

miR-26a, -27b, -30e-5p, -34a, -92, -125, -145, -200c, 
-381, -422a, -423

Hippocampus,
cerebellum, medial

frontalgyrus

Over-expression
15P, 12C

Cogswell et al., 2008 [109]

miR-9, -132, -146b, -212 Down-regulation
let-7f, miR-105, -125a, -135a, -138, -141, -151,

-186, -191, -197, -204, -205, -216, -302b, -30a-5p,
-30a-3p, -30b, -30c, -30d, -32, -345, -362, -371,

-374, -375, -380-3p, -429, -448, -449, -494, -501,
-517, -517b, -518b, -518f, -520a*, -526a CSF

Over-expression

10P, 10C
miR-10a, -10b, -125, -126*, -127, 142-5p, -143,

-146b, -154, -15b, -181a, -181c, -194, -195,
-199a*, -214, -221, -328, -422b, -451, -455, -497,

-99a

Down-regulation

miR-29a Frontal cortex Down-regulation 7P, 4C Shioya et al., [67]
miR-9, -125b, -146a, -155 CSF, BD-ECF Over-expression 6P, 6C Alexandrov et al., [50]

miR-26b SN Over-expression 10P, 8C Absalon et al., [122]
let-7d-3p, miR-112, -151a-3p, -161, -5010-3p

Peripheral blood
Over-expression

106P, 22C Leidinger et al., [61]
let-7f, miR-26a, -26b, -103a, -107, -532, -1285 Down-regulation

miR-9
Serum

Over-expression
105P, 150C Tan et al., [111]

miR-125b, -181c Down-regulation
Parkinson’s disease

miR-133b SNC Down-regulation 3P, 5C Kim et al., [91]
miR-34b, -34c SNC Down-regulation 11P, 6C Minones-Moyano et al., [92]

miR-1, -22*, -29a Peripheral blood Down-regulation 8P, 8C Margis et al., [123]
miR-181c, -331-5p, -193a-p, -196b, -454, -125a-3p, 

-137 Plasma Over-expression 31P, 25C Cardo et al., [124]

miR-21-3p, -224, -373-3p, -26b, -106a, -301b SN Over-expression ? Alvarez-Erviti et al. [93]

miR-205 Frontal cortex Down-regulation 16P,
7C Cho et al., [83]

miR-19b, -29a -29c Serum Down-regulation 65P
65C Botta-Orfila et al., [120]

Table 1: The changes in expression of chosen miRNAs in AD and PD.

Abbreviations: BD-ECF: Brain Derived Extracellular Fluid; CSF: Cerebrospinal Fluid; PBMC: Peripheral Blood Mononuclear Cells; SN: Substantia Nigra; SNC: 
Substantia Nigra Compacta; P: Patients; C: Controls
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Genomic changes in miRNA target sites were also observed in 
FTD. According to Rademakers et al., rs5848SNP associated with 
FTD-TDP is located in the miR-659 target site of the GRN and affects 
the miRNA-mediated repression of progranulin [97].

Similarly, variants in 3’-UTRs have been noticed in PD. In 2008 
Wang et al. described a rs12720208 polymorphism in 3’UTR of 
FGF20 which affected the target site of miR-433. This led to higher 
levels of the FGF20 protein, thus promoting aggregation of ASN [90]. 
Cardo et al. described the SNP in 3’-UTR in the LRKK2 rs66737902 
C allele which was more frequent in PD patients. They also found 
a significantly lower level of the LRRK2 transcript in the substantia 
nigra of PD postmortem patients who possessed the rs66737902 C 
genotype. In silico analyses predicted that the polymorphism affects 
the miR-138-2-3p target site [98].

In the future, knowledge on the genetic variants of miRNA genes 
and target sites could lead to the development of individualized 
therapy targeting and fixing misbalanced pathways responsible for 
developing ND in a given patient [99].

miRNAs as biomarkers important for the diagnosis of 
neurodegenerative diseases

As very movable, independent, small genetic entities that are 
plentiful in brain cell cytoplasm, cerebrospinal fluid and in peripheral 
circulation, miRNAs may serve as diagnostic biomarkers for AD and 
other human CNS diseases [50,61,100-105].

As was stated before, AD is becoming a valid public health issue 
since the number of 24 million AD patients worldwide is expected 
to double in the next 15 years [1]. Even though various approaches 
to developing minimally invasive tests for early detection of AD 
have been tested [106-108], there are no reliable molecular tests for 
diagnosing AD at the pre-symptomatic stage yet.

Cogswell et al. conducted a vast analysis of AD-associated 
miRNAs extracted from various parts of the brain and cerebrospinal 
fluid and described potential AD-specific miRNA biomarkers, which 
are shown in Table 1 [109].

Schipper et al. used the microRNA microarray (MMChip) 
for 462 human miRNAs in order to assess miRNA levels in the 
peripheral blood mononuclear cells of 16 AD patients and 16 
controls, and validated the results by RT-qPCR. They demonstrated 
that miR-34a and 181b were significantly over-expressed (see Table 
1). Subsequently, they performed bioinformatic target sequence 
prediction that yielded genes involved in synaptic activity [110].

Tan et al. conducted a serum study on 105 probable AD 
patients and 150 age- and gender-matched normal controls. The 
concentrations of 6 miRNAs were measured using RT-qPCR. They 
found that both miR-125b and miR-181c were down-regulated, while 
miR-9 was up-regulated in the serum of AD patients as compared 
with that of normal controls. The calculated specificity and sensitivity 
of miR-125b were up to 68.3% and 80.8%, respectively. Moreover, 
miR-125b correlated with the Mini-Mental State Examination 
(MMSE) of AD patients [111].

Leidinger et al. investigated the blood samples of 44 AD patients, 
finding 140 unique mature miRNAs whose expression levels were 
significantly changed. Subsequently, they verified the results by RT-

qPCR on 202 patients and developed an assay of 12 blood-based 
biomarkers able to discriminate AD cases from controls with an 
accuracy of 93%, a specificity of 95% and a sensitivity of 92% (see 
Table 1). They also demonstrated the possibility of being able to 
distinguish between AD and other neurological conditions with 
accuracies between 74% and 78%. They also showed that miR-107 
decreases most significantly in AD, but also in PD and schizophrenia 
and depression. On the other hand, it was over-expressed in Mild 
Cognitive Impairment (MCI) [61]. A study by Wang et al. showed 
that miR-107 levels decrease significantly in the brains of AD patients 
at a very early stage of the disease [63]. These findings suggest that 
testing for miR-107 might provide useful information about a 
patient’s condition in the pre-symptomatic stage of dementia.

Many studies have shown that AD dementia is preceded by 10-20 
years of disease progress, primarily without any significant clinical 
signs (pre-symptomatic AD) before it shows the first symptoms 
of MCI [112,113]. Also, early stages of many neurodegenerative 
diseases, such as FTD and PD, might be misdiagnosed as MCI [114]. 
Current methods of psychological evaluation, e.g. MMSE, are not 
able to predict whether the patient is suffering from stable MCI or will 
develop fully symptomatic dementia [114,115]. This creates the need 
to develop a minimally invasive screening test which would help to 
monitor disease progression and response to currently experimental 
treatment [112]. It is also worth realizing that some unsuccessful 
clinical trials may deliver an effective disease modifier for a fraction of 
patients with early dementia [116]. Despite the obvious advancements 
of neuroimaging techniques, the high costs associated with them 
make them impractical as a tool for screening for early changes in 
the AD brain [117]. Moreover, a desperate need to develop better 
methods for early AD detection has also been highlighted in recent 
FDA reports [118].

Sheinerman et al. recently proposed a method for early detection 
of MCI based on an analysis of cell-free circulating miRNAs in 
the plasma by using RT-qPCR [119]. They identified two sets of 
circulating brain-abundant miRNAs, i.e. the miR-132 family (miR-
128, miR-132, miR-874) normalized per miR-491-5p, and the 
miR-134 family (miR-134, miR-323-3p, miR-382) normalized per 
miR-370, both of which are able to discriminate MCI from an age-
matched control with high accuracy. The miR-132 family biomarkers 
demonstrated 84%-94% sensitivity and 96%-98% specificity, and the 
miR-134 family biomarkers showed 74%-88% sensitivity and 80-92% 
specificity. Combining two miRNAs from the same family increases 
these values even more [119].

In 2014, Botta-Orfila et al. proposed a panel of 3 serum-derived 
miRNAs as potential biomarkers of PD. They conducted three sets 
of experiments, each using more patients, in order to validate their 
findings. Finally, they showed that miR-19b, -29a, and -29c were 
significantly under-expressed as compared to controls in the serum of 
idiopathic PD cases. These miRNAs were not found to be significantly 
changed in other NDs, thus they seem to be promising candidates for 
diagnostic purposes [120].

Conclusion
The role of miRNA in the pathogenesis of NDs is not fully 

understood. As of today (i.e. October 2014), the most reliable 
miRNA database (www.mirbase.org) contains ca. 2600 sequences 
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of mature human miRNAs, and the function of most of them still 
remains unknown. The significant number of described miRNAs has 
been associated with AD, PD and other neurodegenerative diseases. 
However, currently there are no known miRNAs that are specifically 
responsible for the development of individual neurological diseases 
and that could be useful for diagnosis of NDs. Also, currently intensive 
effort is being made to develop miRNA-based assays which could 
combine data on the expression of several cerebrospinal fluid- or 
peripheral blood-enriched miRNAs. This could provide a means for 
introducing sensitive and specific diagnostic tests for early detection 
of neurodegeneration.

Scientists’ efforts are also directed at discovering the genetic 
origin of miRNA-mediated disorders.
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