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Abstract

Neurodegenerative diseases, such as Alzheimer’s Disease, are now 
acknowledged to be multifactorial pathologies, explaining the failure to come up 
with specific targeted treatments. New pathogenic links should be addressed in 
order to integrate the molecular interactions into a comprehensive mechanism. 
Caveolin-1 is a scaffolding membrane protein of caveolae – membrane 
microdomains involved in cell signaling, senescence and cell growth. Increased 
caveolin-1 expression was related to inducement of senescence and was also 
reported in the aged brain. However, cav-1 KO mice express AD- like alterations 
in hippocampus and neurologic abnormalities and incongruent reports in AD 
patients or AD models in this review we present the involvement of caveolin-1 
in aging, with emphasis on aging brain and propose several mechanisms 
of interaction between caveolin-1 and amyloid precursor protein, the main 
pathogenic link of Alzheimer’s disease. Also, in view of reports of synaptic 
plasticity deficits upon Cav-1 KO and its involvement in post-injury reactive 
neuronal plasticity, we propose Cav-1 to be neuroprotective and increased as a 
compensatory mechanism, rather than a direct measurement of aging process.
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is a membrane protein responsible for scaffolding a membrane 
microdomain called “caveola” (pl. caveolae). Caveolae are considered 
signaling nodes and caveolin-1 over expression was related to cellular 
aging [5]. Caveolin-1 knockout mouse is a well established model 
for endothelial dysfunction [6]. In this review we will present this 
animal as a potential AD- like disease model, with arguments related 
to stem cells, amyloid precursor protein and metabolic and signaling 
particularities in neurons.

The concept of brain aging
“Brain aging” concept referred at the beginning to a progressively 

deteriorating performance. Studies on aged animals [7] from more 
than three decades ago reported neuronal loss with aging, along 
with a decreased volume of gray matter. Later reports challenged 
previous data, showing preserved neuronal number, despite cortex 
thinning in human brain [8], and were soon followed by confirming 
studies on animals [9-12]. Modern imagistic methods, from 
computer tomography analysis in the early 80’s [13] to MRI and 
fluorodeoxigluocose PET analyses [14,15], demonstrated that brain 
atrophy does occur with age, in healthy, non-demented elderly. The 
modifications affect both grey and white matter, but the loss is rather 
functional than cellular, more like defective circuitry, rather than 
neuronal loss. Cell preservation in aging was reported even in areas 
susceptible to dementia, such as frontal and medial temporal cortex, 
in which thinning is not always indicative of disease. Rather, instead 
of neuronal loss, a 3D

neuronal network loosening would account for frontal and 
temporal neocortical thinning [16]. A decrease in dendritic branching 
in animal [17] and human prefrontal cortex [18-20] supports 
this hypothesis. Surprisingly, hippocampal neurons, related to 

Introduction
“Neurodegeneration” is a term which can be translated into “loss 

of neurons” accompanied by clinical features related to cognition and 
affect. However, high variability in terms of histopathologic changes 
found in patients with the same clinical diagnostic led to a thorough 
investigation of molecular causes. The limit between “normal” aging 
and neurodegeneration was even more so difficult delineate from 
the perspective of “cognition reserve” – the ability of some subjects 
to counteract neuronal or synaptic loss by “using pre-existing 
cognitive processing approaches or by enlisting compensatory 
approaches” [1]. The most frequent causes of neurodegeneration 
are vascular dementia, Alzheimer’s and Parkinson’s diseases, each 
with its own molecular hallmarks. Alzheimer’s disease diagnostic 
criteria include extraneuronal amyloid plaques and intraneuronal 
hyperphosphorylated tau tangles, but other molecular factors may 
contribute [2]. Parkinsons’s disease is characterized by progressive 
loss of dopaminergic neurons, with yet unknown, but apparently 
multifactorial molecular basis [3]. Vascular dementia is also a 
multifactorial entity [4]. However, molecular research results 
reported a considerable overlapping between these entities, with two 
important consequences: 1) the need for a more accurate diagnostic, 
which led to search of new biomarkers; 2) new disease models 
emerged. Animal models still hold an important role for mechanism 
elucidation, as they allow assessment of apparently non-related effects 
of the molecular defect imposed on the animal. Classical

neurodegeneration mouse models include, among others, 
transgenic animals for mutated amyloid precursor protein, mutated 
tau protein, mutated presenilin enzyme, injection of neurotoxins 
in the corpus striatum, ligation of carotid arteries. Caveolin-1 
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neurogenesis and learning, do not alter their dendritic length, nor 
reduce their spine density in aged humans [21] or rats [22]. MRI 
data showed that white matter reduction is also constant in the aged 
human brain, possibly as an indicator of a defective myelination, 
strongly correlated hypertension and stroke [23]. However, is still 
under debate whether the presence of white matter lacunae yielded 
is significantly related to cognitive impairment [24]. Aging is 
characterized by a reduced neurogenesis, due to altered neurotrophin 
signaling,

Activation of senescence programmers within the niche, 
imbalanced growth factor signaling. Although brain resides in a 
protected environment, isolate by the blood-brain barrier, there are 
evidence of blood-born aging factors to cross the blood brain barrier 
to negatively influence the neurogenesis [25]. Brain aging is also a 
“decrease in homeostatic reserve” [26] which affects, at different 
rates, different cell types that share a homeostatic balance. Cellular 
abilities to limit and buffer Reactive Oxygen Species (ROS), to sustain 
a protective response to cytotoxic stimuli, or to limit vicious circles 
such as inflammatory environments are diminished. DNA damage 
(some ROS-related), mitochondrial aging and decreased ATP 
reserves [27] and affected cellular calcium removal systems [28] add 
to neuronal vulnerability. Thus, understanding the aging process 
of nervous tissue is a more challenging task due to a more complex 
regulation, signaling and intercellular interactions [4].

Caveolin-1 in aging brain
Caveolins 1, 2 and 3, the scaffolding proteins of caveolae, have 

been related to cellular senescence for more than ten years [29], 
changes in their expression were interpreted either as determinants, 
either as effectors of the aging process. Main function of caveolin-1 
has been as proposed to be of signaling node, therefore cav-1, its 
family members (caveolins 2 and 3) and associated proteins (cavins) 
would select which signals are to be transmitted into cells. New data 
revealed that cav-1 is involved in the regulation of many cellular 
processes relevant to cell biology such as growth, migration, control 
of mitochondrial antioxidant levels and senescence [30]. Senescent 
cells express increased levels of caveolins [31] and in vitro over 
expression of cav-1 induced an early senescence in different cell types 
[32-34]. Contradictory, cav-1 KO animal models showed reduced 
lifespan [35], paradox that was attributed to cav-1 function as tumor 
suppressor [36,37]. Cho et al. proposed the “Gate theory of aging”, 
when “gatekeeper molecules at the membrane level would play the 
prime role in determining the senescent phenotype”; caveolae and 
caveolins are suitable for this role due to their regulation of cell 
signaling, calcium storage and quantization of cross-talk between 
signaling cascades [29]. Plasma membrane composition also changes 
with age, including the cholesterol composition. Such changes could 
influence the expression and distribution of caveolins in caveolae. 
Different tissues age differently in terms of caveolins expression: 
cardiac muscle shows increased cav-1 in the fractions of membrane 
forming caveolae [38], unlike smooth muscle, which does not change 
levels of cav-1 and cavin-1 [39]; aged endothelial cells increase 
their levels of cav-1 [40]. Brain and nervous tissue have their own 
particularities in term of aging and caveolin content. Aged mice 
increase their cav-1 expression in the hippocampus, similar to cav-
1 expression in hippocampal tissue in patients with Alzheimer’s 
disease [41]. Cerebellum does not change expression of cav-1 with 

age or pathology. Down regulation of hippocampal caveolin-1 
was related to reduce synaptic plasticity in aging and its increased 
expression could be interpreted as a compensatory mechanism [42]. 
Cav-1 is expressed in neurons, mostly in pyramidal neurons of the 
frontal motor cortex, but also in parietal cortices, CA1 layer, stratum 
oriens and stratum radiatum of hippocampus [43]. The protein is 
also present in glial cells, although no caveolae have been identified in 
either cell type. Over expressing cav-1 in neurons led to a decrease in 
primary neurite outgrowth and branching, but an increase in neurite 
density [44]. In glutamatergic neurons, cav-1 interacts with glutamate 
receptors. Treatment with glutamate, kainate and AMPA increased 
the expression of caveolin-1, suggesting that “activation of ionotropic 
receptors regulates neuronal expression of caveolin” [45].

Caveolin-1 knockout mouse model
After identification of caveolin-1 as the prime component of [46], 

a knockout mouse model was generated for the study of the protein 
function in vivo. Surprisingly, cav-1KO mice were viable but showed 
evidence of hyperproliferative and vascular abnormalities, consistent 
with the wide distribution of caveolae in endothelial cells throughout 
the body. First roles attributed to cav-1 were stabilization of caveolin-2 
to caveolae, mediator for caveolar endocytosis of specific ligands, 
negative regulator of cell proliferation and eNOS activity inhibition 
in endothelial cells [47].

Although viable, aged cav-1-deficient mice display significantly 
lower body weights and were resistant to diet- induced obesity, as 
compared with wild-type controls mice, even on a high fat diet. 
Serum profiles of these animals showed normal insulin, glucose, and 
cholesterol levels, but severely elevated triglyceride and free fatty acid 
levels, especially in the post-prandial state [6]. They have, however 
drastically reduced insulin receptor protein levels (>90%), without 
any changes in insulin receptor mRNA levels [48]. This mouse model 
is also characterized by alterations in other signaling pathways than 
nitric oxide and insulin, such as Extracellular-Signal Regulated 
Kinase (ERK), calcium signaling [45], modified balance of pro-and 
anti- inflammatory cytokines [49]. Cav-1 KO mice have reduced 
brain weight and develop a number of neurological phenotypes, with 
motor and behavioral abnormalities, including muscle weakness, 
clasping, reduced activity, abnormal spinning and gait abnormalities, 
without neuronal loss [50]. This finding could be related to previously 
report synaptic loss, sharing the same mechanisms at neuronal 
plate. Also, as a membrane protein, cav-1 loss could count for less 
myelinization, which is basically a glial cell membrane enwrapping 
around the axons.

Cav-1 and neurogenesis
An interesting approach regarding cav-1 involvement in nervous 

tissue homeostasis was reported starting from Neuronal Precursor 
Cells (NPC) from dentate gyrus and subventricular zone. Cav-1 
KO mice showed increased number of newly formed neuroblasts 
than wild type of matching age, while in vitro knockdown of Cav-
1 promoted oligodendroglial differentiation of NPCs via β- catenin 
expression [51]. In turn, cav-1 promoted differentiation of NPCs 
towards astroglial line [52]. Another cav-1 related way to modulate 
NPC proliferation was recently reported by Samarasinghe et al. A 
non-transcriptional glucocorticoid signaling pathway that operates 
via lipid-raft associated glucocorticoid receptors requires cav-1 to 
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alter NPCs proliferative capacity [53]. Cav-1 mediated signaling 
via GR could impact on development of NPCs by “regulating the 
degradation of cell cycle regulators or migration of differentiated cells 
derived from NPSCs to their final position in the cortex” [53].

Caveolin-1 in neurodegeneration and Alzheimer’s disease
Although most data reported until several years back associated 

increased cav-1 with ageing, more and more results stated a 
neuroprotective role of cav-1. Starting with the cav-1 KO phenotype, 
to reports of synaptic plasticity deficits upon cav-1 KO [42] and 
involvement in post-injury reactive neuronal plasticity [44], cav-1 
seems to be neuroprotective. From this perspective, the increase of cav-
1 in brain of aged animals or brains of AD patients could be interpreted 
as a compensatory mechanism and not a direct measurement of 
aging process. Caveolin-1 and amyloid precursor protein – putative 
mechanisms of cooperation APP is a transmembrane protein, which 
can be metabolized in two ways: a physiologic one, generating soluble 
neurotrophic fragments and a pathologic one, generating insoluble 
amyloid beta peptides (Aβ) that aggregate in the extracellular matrix, 
forming senile plaques in the AD brain. Membrane regions of high 
cholesterol content, such as caveolae, favor the pathologic pathway 
and generation of Aβ. It has been demonstrated that APP localizes 
preferentially in cholesterol rich- membrane microdomains [43]. 
Cav-1 KO mouse model exhibits AD characteristics, such as elevated 
Aβ deposition in the hippocampus, cerebrovascular changes and 
increased astrogliosis, with early onset [54].

From literature data, several mechanisms can be put forth, 
through which amyloid precursor protein expression or processing 
can be modified by cav-1:

1- Cav-1 presents a Cav Scaffolding Domain (CSD), which 
can interact with other membrane proteins, including APP, thus 
facilitating its proteolysis [41].

2- APP is preferentially expressed in cholesterol –rich domains, 
such as caveolae [43] and its amyloidogenic processing is favored 
by hypercholesterolemia [55]. Disruption of caveolae by cav-1 
KO may redirect APP traffic towards lipid rafts (also cholesterol 
enriched) leading to increased extracellular Aβ peptides deposition. 
Furthermore, both enzymes involved in amyloidogenic processing 
are located in lipid

rafts: β secretase compartmentalizes in non-caveolar lipid rafts 
[56] and γ secretase in detergent-resistant membranes [57].

3- Over-expressed cav-1 in β-secretase expressing cells resulted in 
decreased Aβ production, suggesting a protective role by cav-1 [54].

4- Caveolae and cav-1 act as signaling nodes, regulating activation 
of various kinases. In turn, APP has eight phosphorylation sites in the 
Cterminal domain, potentially affected by the modification of cav-1 
expression. Phospho-Thr668 is essential for its binding to Fe65 and 
its nuclear translocation possibly followed by induction of glycogen 
synthase kinase 3β and tau phosphorylation [58].

5- Loss of cav-1 may alter phosphorylation of other proteins 
involved in APP trafficking: Mint1/X11α is one of four neuronal 
trafficking adaptors that interact with APP. Srcrelated tyrosine 
phosphorylation of Mint1 regulates the destination of APP, restricting 
its distribution to distal neurites [59].

Conclusion
Neurodegeneration is a multifactorial process, not necessarily 

related to a pathological process. Conversely, pathological alterations 
may be present, without any clinical signs. Although there are 
numerous and well characterized animal models to study the most 
frequent neurodegenerative diseases, other models may unravel new 
pathogenic links. Caveolin-1 knockout mouse is emerging as a novel, 
non-mutational model, which, due to is endothelial dysfunctions, 
could be related to vascular dementia. However, recent data regarding 
amyloid precursor protein processing in these mice, may argue also 
in favor of Alzheimer disease model, providing a multifactorial 
dementia model.
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