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Abstract

Ligusticum wallichii, a famous hemorheologic agent of Chinese medicinal 
herb, was used to treat headache, rheumatic arthralgia, irregular menses and 
other diseases during ancient years. Today dozens of chemical compositions 
in this herb have been isolated and identified including butylphthalides, 
terpene, organic acid, alkaloid, polysaccharide and others compounds. These 
compounds contain many active ingredients such as tramethylpyrazine, 
ligustilide, ferulic acid, protocatechuic acid, and β-sit sterol. Interestingly, more 
and more studies showed that Ligusticum wallichii and its active ingredients 
can ameliorate cognitive function through increasing mitochondrial biogenesis, 
ameliorating cerebral ischemia, resisting oxidative stress, purging inflammatory 
reaction and anti-apoptotic. This paper reviews the current research findings 
about the active ingredients of Ligusticum wallichii to treat Alzheimer’s disease 
and discusses the potential measures to intervene mild cognitive impairment or 
Alzheimer’s disease.
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are used to intervene some miscellaneous diseases as a result of 
they owns their distinctive active ingredient. It is worth mentioning 
that Alzheimer’s disease is an important research direction in those 
miscellaneous diseases. The paper reviewed recently findings of 
Ligusticum wallichii and their compounds in treat AD by searching 
key words Ligustrazine, tetramethylpyrazine, protocatechuic acid, 
β-sitosterol, oxidative stress, β-amyloid or Alzheimer’s disease in 
PubMed.

Anti-oxidative stress and Alzheimer’s disease
β-amyloid is the central pathologic feature, but it may not the 

first factor in the development of AD became of there aren’t statistical 
difference in increasing of senile plaques and NFTs in Mild Cognitive 
Impairment (MCI) [8], but the lipid peroxidation like isoprostane 
8,12-iso-iPF(2alpha)-VI increased obviously in cerebrospinal 
fluid, plasma, and urine [9]. What’s more, oxidation of protein 
such as Protein carbonyls and 3-nitrotyrosine were be observed in 
hippocampus, middle superior temporal gyrus and cerebrospinal 
fluid [10-12] in AD patients; Reactive aldehydes, the other lipid 
oxide, like Malon Di Aldehyde (MDA), 4-hydroxynonal, 2-propenal 
were also detected in hippocampus, temporal cortex, amygdala 
and other areas [13-15]. Besides, oxidation of DNA/RNA such as 
8-hydrOxydeoxyguanosine and 8-hydroxyguanosine were certified 
distributes in hippocampus and cerebral cortex. These evidences 
indicate that oxidative stress may be the vital factor. Therefore, 
abnormal active oxygen species (aROS) may play a leading role in 
the development of AD, and purging aROS could be the first step to 
intervene Alzheimer’s disease.

Normally Ligustrazine or tetramethylpyrazine is considered 
as the major active ingredient in Ligusticum wallichii. Ligustrazine 
hydrochloride or phosphate has been used in clinic to treat some 
obliterative vascular disease [16] like cerebral ischemia, cerebral 
embolism, vasculitis, coronary heart disease. Emerging researches 

Introduction
Alzheimer’s disease (AD) is an aging neurodegenerative disease, 

accompanied by the distinctive pathology-senile plaque and Neuro 
Fibriler Tangles (NFTs). However, the pathogenesis is still unclear. 
Though there are many hypotheses for the pathogenesis of AD, they 
can’t still explain some pathological changes and solve some needs in 
clinic. For example, β-amyloid cascade hypothesis is the mainstream 
hypothesis, National Institutes of Health (NIH) and others leading 
pharmaceutical companies have invested heavy to study potential 
drugs to intervene AD according to Immunotherapy which aim to 
anti-β-amyloid,

But unfortunately these drugs were losing in clinical tests [1]. It 
suggests that mono-target drugs can’t cure these difficult miscellaneous 
diseases like AD, whereas drugs combination according to clinical 
symptom may be an available medium. Fortunately, Traditional 
Chinese medicine has exhibited distinctive advantages to prevent 
or cure those diseases. Not only many classic prescriptions such as 
Huanglian jiedu tang [2], Danggui Saoyao san [3] and smart soup [4] 
but also many Chinese herbs like ginseng or theirs compounds [5,6] 
can obviously ameliorate some symptom in AD patients or animal 
models. 

Ligusticum wallichii, a famous hemorheologic agent of traditional 
Chinese medicine, has been used more than two thousand years to 
treating headache, rheumatic arthralgia, irregular menses and other 
diseases. Modern pharmacological researches show that it contains 
many pharmacological actions including enhance vascular endothelial 
function, ameliorate coronary blood flow, anti-thrombosis, resist 
oxidative stress, purge inflammatory reaction and neuro-protective. 
Thus, it always acts on cardio cerebral vascular system, nervous 
system, respiratory system and other related systems [7]. Moreover, 
a lot of chemical composites has been isolated and identified, they 
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implicates tetramethylpyrazine can enhance Nuclear factor erythroid 
2-related factor 2 (Nrf2)-Glu-tamyl Cysteine Ligase (GCLs) mediate 
GSH activities, and suppress Hypoxia-Inducible Factor 1α (HIF-
1α) -NADPH oxidase-2(NOX2) mediated ROS generation to 
maintains redox balance and neuroprotectiv activities [17]. Ferulic 
acid, an important active ingredient of Ligusticum wallichiin and 
Radix Angelica sinensis,can increase antioxidase activity to suppress 
oxidative stress [18-19]. Ligustilide, like ferulic acid that comes from 
Ligusticum wallichii or Radix Angelica sinensis, can also defense 
oxidative stress by improving cellular antioxidant activities [20] 
and up-regulating Klotho expression to protect neuron [21]. In 
addition, protocatechuic acid and β-sitosterol are also ameliorate 
cognitive function via alleviating oxidative stress. However, The 
former (protocatechuic acid) inhabited oxidative stress through 
up-regulating the expression of hallmark antioxidant enzymes and 
decreasing the levels of malondialdehyde [22]. But the antioxidant 
effect of β-sitosterol was associated with estrogen receptor mediated 
Phosphatidyl Inositol 3-Kinase (PIK3) / Glycogen Synthase Kinase 
3 (GSK-3β) signaling [23]. Together, these researches suggest 
that antioxidant effect of those compounds mainly rely on three 
pathways: (1) increasing the activities of antioxidase; (2) enhancing 
the expression of Nrf2; (3) regulating estrogen receptor-PIK3/GSK-
3β signaling.

Amyloid beta and Alzheimer’s disease
Though β-amyloid cascade hypothesis can’t explain why there 

aren’t statistical differences in increasing of senile plaques and NFTs 
in MCI [8], and why the metabolic disease like atherosclerosis [24], 
obesity [25] and type 2 diabetes mellitus [26] may the primary risks in 
the development of AD. It is still play a vital role in the pathogenesis 
of Alzheimer’s disease. Recently, a new study shows that the 
complement-dependent pathway and microglia were inappropriately 
activated and mediated synapse loss in AD [27]. It is worth noting that 
even C1q had increased in J20 a mouse at 1 month old that precedes 
plaque deposition [28] but punctate β-amyloid was also found at the 
same time [27]. Although this research suggests that complement 
and microglia are the potential early therapeutic targets in AD and 
other neurodegenerative diseases involving synaptic dysfunction and 
memory decline [27], pruning oligomeric β-amyloid or inhabiting its 
generation are still the pivotal way to intervene or treat AD.

More and more evidences show that high cholesterol is closely 
related to the pathogenesis of AD [29]. What’s more, high cholesterol 
can increase activities of β- and γ-secretase and promote β-amyloid 
generation. Amazingly, a recently study suggests that β-sitosterol 
can inhabit β-amyloid release through maintaining of membrane 
cholesterol homeostasis [29], and more subsequent experiments 
indicate that β-sitosterol can enter the brain and accumulate 
in the plasma membrane of brain cells. Besides, it can promote 
nonamyloidogenic processing of Amyloid Precursor Protein 
(APP) without affecting membrane fluidity [30]. Attenuating the 
neurotoxicity induced by β-amyloid was the other important segment. 
Among the active ingredient of Ligusticum wallichii, ligustilide, ferulic 
acid and protocatechuic acid can ameliorate those lesions in different 
ways. Firstly, ligustilide improved the pathology relied on modulating 
TNF-alpha-activated NF-κB signaling pathway [31]. Secondly, ferulic 
acid weakened the lesions through three pathways: (1) inhibiting the 
aggregation of Aβ42 oligomers by blocking the hydrogen bond with 

the forming β-sheets [32,33]; (2) decreasing cleavage of the β-carboxyl-
terminal APP fragment and reducing β-site APP cleaving enzyme 1 
protein stability and activity [34]; (3) attenuating phosphorylation of 
ERK1/2 and modulating oxidative stress via reducing cytochrome C 
release and increasing the expression of Peroxiredoxin [35]. Finally, 
like ligustilide, protocatechuic acid reduced neurotoxicity involving 
inflammatory response and brain derived neurotrophic factor 
[36]. Together, mediating β-amyloid generation and oligomerize, 
modulating oxidative stress and inflammatory response are the chief 
targets to suppress β-amyloid and reduce its neurotoxicity in these 
compounds.

Is β-amyloid the essentially pathogenic factor?
There is no doubting senile plaque caused by β-amyloid is the 

central pathologic feature and β-amyloid can induce oxidative 
stress, inflammatory, mitochondrial dysfunction etc. However, 
the question is raise what activates β- and γ-secretase, especially 
β-secretase? Many factors such as oxidative stress, inflammatory 
are really the downstream effect of β-amyloid or Tau [37]? At first, 
according to many studies we can find that many transgenic model 
like APP/PS1 mice, PDAPP, Tg2576, APP23, TgCRND8 and J20 
[38] were used to research pathogenesis of AD. Spontaneously, those 
results show β-amyloid play the pivotal role in the pathogenesis. In 
fact, what these transgenic animals imitate is Familial Alzheimer’s 
Disease (FAD) not the sporadic Alzheimer’s disease. Secondly, 
increasing evidences indicate cardiovascular diseases can increase 
risk of AD [39-40]. Interestingly, oxydate particularly oxidized low-
density lipoproteins play a important role in the incidence of these 
diseases like atherosclerosis [41]. So ROS induced oxidative stress 
may be the leading risk, and it is noteworthy that ROS can from 
normal physiological activity that called endogenous ROS (enROS) 
and external environment which named exogenous ROS (exROS) 
[42], the former can be clean up in time, but the later may not 
purge in time and many researchers have suggested that exposing 
to particulate matter for a long time obviously damaged oxidative 
imbalance, promoted lipid or protein oxidation products [43,44]and 
even destroy DNA [45,46], thus exROS could be the essential risk. 
Together, whether exROS is the leading factor in AD, more and more 
task needs to carry out.

Conclusion
Chinese medicine is an important constituent part of traditional 

Chinese medicine, and it become more and more popular. Many 
compounds like artemisinin, vinblastine, and L-3-n- Butylphthalide 
that separated from Chinese herbs own their particular 
pharmacological action to treat a few difficult miscellaneous diseases 
such as helopyra, tumour and cerebrovascular disease. Though many 
Chinese herbs and their compounds have been affirm to ameliorate 
some pathology of AD, like cancer or Acquired Immune Deficiency 
Syndrome (AIDS), AD isn’t an ordinary disease. Drugs combination 
may lead a direction to treat AD. Thus, exploring the pathogenesis 
of AD, discovering new medicine and dealing with the relationship 
among these drugs rationally are still the primary task.
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