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Abstract

The moisture isotherm of fruits can be determined at various temperatures 
range. The equilibrium moisture content of dehydrated fruits increased sharply 
as the temperature increased. Adsorption isotherm curves of dehydrated fruit 
showed the characteristics of a type between II-III shapes. More starch contains 
fruits show type II isotherm curves whereas high sugar contains fruits show 
type III isotherm. This phenomenon can further be explained by temperature 
dependent constants of the GAB isotherm model. Some dehydrated fruits have 
higher monolayer moisture content and specific active surface area, which 
could be related to their physico-chemical composition, but both decreased with 
increase in temperature. The net isosteric heat of sorption was higher in more 
starch containing dehydrated fruits than high sugar content fruits possibly due 
to different physico-chemical and structural composition with regards to their 
sorption characteristics.
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microbial spoilage. In general, recommended aw of most dehydrated 
fruits is relatively <0.6 for safe storage [2]. However, expose to high 
drying temperature and significant loss of moisture in fruits cause 
irreversible stresses in the cellular structure of the fruits and may 
leads to robust textural changes especially during storage.

The properties such as structure, texture and storage time of a 
dehydrated fruits depend on the moisture adsorption characteristics 
and are useful in design and modeling of drying, aeration and storage 
processes. The relationship between aw or ERH and EMC of a product 
is described by the moisture sorption isotherms. Each commodity has 
a unique set of isotherms and these isotherms are useful to determine 
the lowest moisture content attainable under the specific drying or 
storage conditions [3-8]. The monolayer moisture content (mo) is also 
recognized as the optimum moisture content for good storage stability 
and to maintain the overall quality of dehydrated products [3]. The 
shape of the sorption isotherm curve has resulted due to the physical 
adsorption of moisture into fine porous structure of the food [9]. In 
general, type II and III isotherms (Brunauer’s classification) show 
a lower water sorption with an increase in temperature at constant 
aw [4,10], indicating loss of hygroscopicity of the fruits at higher 
temperature. During dehydration, structure and physico-chemical 
nature of the food materials such as starch may undergo in partial 
gelatinization process [11] and sugar may undergo crystallization at 
high temperature.

Adsorption Isotherm
The moisture adsorption may reduce significantly due to 

reduction in moisture affinity sites within the tissue with increasing 
temperature. The aw of the dehydrated fruits showed a decrease 
with increasing temperature, which can be explained with the help 
of a thermodynamic equation. Isotherm behavior characteristics of 
sugars and sugar containing dehydrated fruits have been reported by 
several authors [11-18]. The sharp increase in moisture content of 
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Introduction
Dehydration is an important preservation technique with 

the primary objective of reducing microbial activity, product 
deterioration and extension of shelf-life during storage. Most fruits 
contain enough moisture to induce the microbial growth and activity 
of natural enzymes but by drying can reduce aw and prevent microbial 
and enzymatic spoilage. Some physical changes may occur in fruit 
drying operation such as shrinkage, puffing, sugar crystallization, 
gelatinization of starch and glass transitions etc. In some cases, 
desirable or undesirable chemical or biochemical reactions may also 
occur. Structural collapse in fruits due to moisture removal from the 
fruits product results significant changes in texture [1]. Therefore, 
reduction of aw in the final product is a very important way to ensure 
the stability of the dried or dehydrated foods. Dehydrated fruits 
with sufficient low aw ensure the both low enzymatic activity and 
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dehydrated fruits could be explained by the solubility of sugars and 
starches at increasing aw (equilibrium) under constant temperature 
(Figure 1). Adsorption isotherms of many dehydrated fruits that 
contain high TSS intersect at aw between 0.5 and 0.8 with increasing 
storage temperature [10,12,13,16,19,20].

At low moisture, fruits contain high TSS are hygroscopic and 
tends to absorb large amount water at high aw and temperature as 
results of solubilization of sugars [20]. Another reason may associate 
to high cellulosic and capillary micro-structure of the dehydrated 
fruits can retain more water within the fruit matrix due to high 
surface tension [10,14,21]. Therefore, creation of a transient capillary 
structure along with an increase the number of active binding Site (S) 
inside the micropores structure of the fruits which helps to adsorb 
more water [22]. However, at very low moisture content or under 
very low aw levels, the transient capillary structure may not play an 
important role in moisture adsorption.

Modeling of the Sorption Isotherms
Although there are several mathematical models to describe 

the moisture sorption characteristics, six parameter Guggenheim-
Anderson-de Boer equation [23] known as GAB model was frequently 
used best model to analyze the sorption isotherms of fruits (equation 
1) for many raw or process biological materials [11-18, 23-28].

[ ])      1( )  1( 
  

waC KwaKwKa
waC Komm
+−−

=
		  (1)

It has been shown that parameters K of the GAB model must be in 
the range of 0<K≤1, whereas parameter C essentially needs to be C>0 
[24, 25, 30]. The coefficients mo, C and K are related to temperature 
and can be expressed using Arrhenius type equations 2, 3 and 4 [25-
28]. These parameters of GAB models are play an important role 

in predicting the moisture sorption characteristics of the biological 
materials.

[ ]TgcC O  exp = 				    (2)
[ ]TikK O  exp  = 				    (3)
[ ]Temm ao  exp  = 				    (4)

According to the above equations, g and i values are highly depend 
on the sorption enthalpy values. Therefore, Arrhenius constants of g 
and i show the liner relationship with heat of sorption enthalpy values 
where g = hm-hn/R and i = hi-hn/R.

Therefore, comprehensive temperature dependent six-parameter 
GAB model fitted more accurately over the wider range of awand 
the temperature between 0.11-0.9 and 25-60oC, respectively [11]. 
The GAB model has been used successfully to explain the moisture 
sorption behavior of many foods [15,16,19,25,28,30,31]. The 
difference in the degree of suitability of moisture sorption models for 
the different fruits could be due to inherent differences in the fruits 
particularly in relation to their biochemical composition, processing 
conditions [19] and the method of dehydration (Table 1).

Shape of the Sorption Isotherm
The sorption isotherms of fruits obtained characteristic type either 

II or III isotherms with agreement of GAB classification (Figure 1). If 
parameter C ≥ 2, the GAB equation gives a sigmoidal shape curve 
with a point of type II inflection [25]. Lewicki [29] reported that GAB 
model describes well sigmoidal type II isotherms when parameters K 
and C are kept in the rages of 0.24 <K≤1 and 5.76 ≤C≤∞. The type II 
isotherm is more related to moisture sorption of starchy foods such as 
cereals, tubers, other grains and starchy fruits i.e. jackfruit, breadfruit 
etc., [8-7]. For type III isotherms, generally the value of C in the range 
of 0 < C≤2 without point of inflexion [24-25]. Type III isotherm is 
referred as “J-shape” isotherm which is characteristic feature of high 
TSS containing fruits food products and it is undoubtedly related 
to multilayer moisture development [16,19,20] due to the physical 
adsorption of moisture aw >0.6.

Monolayer Moisture Adsorption
The mo is the minimum moisture content covering the active 

hydrophilic binding site on the material and it is necessary information 
for achieving maximum storage period with minimum quality loss of 
dehydrated fruits. The mo was calculated using the GAB model and 
it is a constant of the model. Generally, the mo value decreased with 
the increase in temperature. According to the reported data GAB 
constant values of mo content in the rage of 2.7-17.0 g/100 g (d.b.) 
for many dehydrated fruits in the isothermal range of 15-70oC (Table 
1). These differences of mo of fruits could be caused by differences 
in drying techniques and physico-chemical composition of different 
varieties of fruits.

In general, fruits that contain high amount of amorphous sugars 
in the tissue matrix have high affinity to surface adsorption of moisture 
that comes into direct contact with the fruit matrix. Quirijns et al. 
[30] and Togrul and Arslan [27] have reported that reduction of total 
number of S as a result of physical or chemical changes in the existing 
porous structure of the products. This phenomenon can further 
be explained by using S of active binding site (Table 1). The active 

Figure 1: Type II and III moisture adsorption isotherms of dehydrated jackfruit 
(A) and mango (B), respectively, at 30, 40 and 50oC. mi is experimental 
moisture content and mp is predicted moisture content. Source: Prasantha 
and Amunogoda [11].
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binding sites of S of dry matter, could be determined by S = mo × 3.53 
× 103 m2 g-1 (3.53 × 103 = Avogadro number×surface area of a water 
molecule/molar weight of water). The total S available for hydrophilic 
binding in adsorption decreased with increasing temperature. The 

large S of active binding sites was attributed to the existence of many 
intrinsic micro-nano porous structures of dehydrated fruits and 
dehydrated fruits that contain high TSS [9,27,32] such as osmotically 
dehydrated, freeze drayed and solar dehydrated fruits (Table 1).

The Isosteric Heat of Moisture Sorption
Net isosteric heat of sorption qs (J/mol-1) is the amount of energy 

required to remove water from the products in excess of the energy 
required for free water evaporation. Clausisus-Clapeyron equation 
(5) is used to calculate qs. The value of qs is calculated from the slope of 
the linear regression line plotted between ln (aw) and 1/T at constant 
moisture [27,33-38].

( )
( )

 ln

 1/

d a qw s
d T R

 
= −  

   				    (5)

The value of qs is generally depending on the physico-chemical and 
structural composition of the materials with regards to their sorption 
characteristics (Figure 2). The very high qs at low moisture content 

Drying method mo (g/100g)† Temperature (oC) qs (kJ/mol-1)‡ S (m2g-1)* Reference

Osmotically dehydrated fruits

Apples 11 30-50 - 388.3 33

Raisins 14 15-60 10.6 494.2 19

Currents 17.3 15-60 5.7 610.7 19

Prunes 12.6 15-60 18.5 444.8 19

Apricot 11.7 15-60 14.8 413.01 19

Pineapple 7.3-6.8 20-40 - 257.7-219.0 16

Freeze dried fruits

Raspberry 7.4 23 - 261.2 34

Strawberry 5.1 30 - 180 34

Kiwi 4.7 30 165.9 34

Blueberries 17.4 Apr-45 13.8 614.2 35

Passion 6.4-6.3 20-50 40 36

Cabinet dried fruits

Raisins 2.75 15-60 20 97.07 19

Figs 9.7 15-60 22.5 342.4 19

Figs 4.27 15-60 13.2 150.7 15

Prunes 4.54 15-60 20 160.3 15

Apricot 4.13 20-40 20 145.8 15

Apple 6.21 15-45 12.3 219.2 15

Banana 27.6 40-70 16 974.3 15

Papaya 13.8-6.2 May-45 57.35 487.1-219.0 37

Solar dried fruits

Mango 10.0-11.4 50-30 19.5 353-402.4 11

Jackfruit 3.6-5.0 50-30 33 127.1-176.5 11

Vacuum dried fruits

Mango 3.15 26-50 20 111.2 21

Passion 6.4-6.3 20-50 37 36

Table 1: Effect of drying method on monolayer moisture content and isosteric heat of sorption different dehydrated fruits derived from GAB model.

†GAB constant of monolayer moisture content mo; ‡Net isosteric heat of sorption; *Surface area of active binding site S=3.53×103×mo

Figure 2: Net Isosteric heat of sorption vs moisture content (g/100g dry 
matter) of the dehydarated Mango and Jackfruit. Source: Prasantha and 
Amunogoda [11].
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was an indication of strong water-starch component interactions in 
the dehydrated fruits (Table 1).

At low moisture content, moisture is adsorbed at the strongest 
binding sites on the active surface of the solids perhaps to the surface 
of Nano size capillaries [32]. As moisture increases, the food material 
tends to swells and opening up new sites for moisture to bind in the 
food. Therefore, low level of the heat of sorption required at high 
moisture content in the food materials [22,27,38] than low moisture 
containing dehydrated fruits.
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