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Abstract

Analysis of analytes with polar functional groups using gas chromatography-
mass spectrometry pose challenges due to adsorption of these analytes on the 
active sites of injector port and capillary column. These can be overcome by 
performing derivatization. An attempt has been made to review the literature to 
understand the injector port derivatization (particularly silylation) coupling with 
dispersive liquid-liquid microextraction for the analysis of polar analytes and its 
use in the analysis of chemical analytes containing polar functional groups. 
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sensitive and reproducible methods, Rasmussen has introduced a 
technique called injection port silylation (IPS) which is an online 
derivatization technique [2]. It is a gaseous phase reaction between 
a silylating reagent and polar analytes which occurs inside the hot 
GC or GC-MS injection port. Basically, IPS is a type of injection 
port derivatization (IPD), which also includes derivatization of polar 
analytes with ion-pair reagents such as tetra alkyl ammonium salts 
(TAA) such as tetrabutylammonium hydrogen sulphate (TBAHS), 
tetrabutylammonium chloride (TBAC) and tetrabutylammonium 
hydroxide (TBAH) [3-5]. In solution form, the TAA forms an ion-
pair complex with analytes containing carboxylic or sulfonic acid 
groups which upon the introduction in hot GC-MS injection port 
forms an ester with polar analyte and tertiary amines as by-products. 
However, the major constraint of alkylation with TAA is that, only 
acidic functional groups can be derivatized.

In contrast to IPD with TAA, IPS overcomes the aforesaid 
limitations and can derivatize polar functional groups such as –OH, 
-NH2, -COOH, -SH. Additionally, IPS also reduces the possibilities 
of degradation of derivatives as their exposure to moisture sensitive 
conditions is negligible. IPS has overcome the major problems 
associated with traditional in-vial silylation. Extra experimental 
apparatus such as the heater and reaction vials are not required for 
IPS derivatization as reagent and analytes are simultaneously or 
one by one injected inside the GC injection port. In addition, the 
amount of reagent required for derivatization and sample is greatly 
reduced from microliters to nanoliters. The reaction efficiency of 
on-line derivatization is also improved when compared to off-line 
derivatization which subsequently enhances the detector sensitivity 

Introduction
Development of modern sample preparation techniques is 

aimed to focus on the use of zero or minimum amount of toxic 
solvents for extraction and to reduce the cost and time of analysis 
in the whole extraction procedure. In recent years, development 
of  microextraction techniques such as solid-phase microextraction 
(SPME), single drop microextraction (SDME), and dispersive liquid-
liquid microextraction (DLLME) etc has attracted  a great promise 
for effective sample preparation techniques. Conventional gas 
chromatography (GC) or gas chromatography-mass spectrometry 
(GC-MS) is not an ideal choice to study polar,  hydrophilic and 
nonvolatile compounds as these compounds are well adsorbed on the 
active sites of injector port and column, additionally intra-molecular 
hydrogen bonding also interferes with the analysis of polar analytes 
by GC. This problem can be overcome by derivatizing polar analytes 
with a suitable derivatizing reagent. Derivatization increases the 
volatility, detectability and thermal stability of polar compounds. Out 
of the derivatization reagents reported, silylation is the most preferred 
derivatization and it has found wide applications for the analysis of 
polar analytes using GC or GC-MS analysis [1].  

Injection Port Silylation (IPS)
Silylation is the most widely used derivatization method for the 

conversion of polar analytes into non-polar derivatives [1]. However, 
a conventional silylation which is performed outside the GC-MS 
injection port in a reaction vessel requires high temperature (~60–
80°C), longer reaction time (~30–120 min) and large volume of toxic 
solvents/reagents. In order to overcome these limitations for rapid, 
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and accuracy of quantification [6]. A summary of the research 
articles of coupling of IPS with various extraction methods for the 
determination of polar compounds is shown in Table 1.

Applications of IPS
The  derivatization  using IPS for GC  analysis  of 46 acidic 

and polar pollutants including phenols, acidic herbicides 
and several pharmaceuticals extracted from water samples 
[7]. Three  derivatization  strategies such as  silylation, 
acetylation and alkylation tested  for the analysis of all the 
targeted  analytes.  N-(tert-butyldimethylsilyl)-N-methyl-
trifluoroacetamide, MTBSTFA  (silylating  reagent) was found to 
give best results for the simultaneous analysis of 46 acidic and 
polar pollutants using IPS. The high pH need for in-situ acetylation 
decreased the extraction efficiency of pharmaceutical herbicides, 
because phenols could not  derivatize  with alkylating reagent such 
as tetrabutylammonium salt [7].

Several factors such as mode of injection, injector port temperature 
and derivatization time influence the yield of IPS as studied by several 

authors [8-11]. In one such study, Vinas and the co-workers [8] have 
used  BSTFA  for IPS of polyphenols and compared the mode of 
injection either split and split-less and later was found superior over 
former. The temperature of GC-MS injector port between 160–280°C 
was also screened. The  yield of derivatization  of all polyphenols 
was found to increase upto 240°C and this  temperature  was found 
most suitable for the IPS  derivatization  of polyphenols [8]. The 
injector port temperature has played a critical role during IPS. Tzing 
and Ding [9] have shown that as the temperature raises from 75 
to 90oC, the derivatization yield increased; which tends to decrease 
further after 90oC for the  analytes  melamine and  cyanuric  acid 
with  BSTFA  containing 1%TMCS.  The residence time, i.e. time 
required for the  analytes  to react with  derivatizing  reagent inside 
the GC-MS injection port was also evaluated and found that 2 
min giving the  optimum  derivatization  efficiency. In another 
study conducted to  evaluate  the  effect  of solvents used for IPS for 
fluoxetine and  norfluoxetine  have shown that  less volatile solvents 
were able to give satisfactory repeatability of the  derivatization. 
Apart from these,  initial  column temperature and carrier gas flow 
rate has shown to effect the yield of derivatization using N-methyl-

S.No. Analyte(s) Matrix Derivatizing Reagent Extraction Technique Reference

1 Phenols and acidic herbicides water MTBSTFA SBSE [7]

2 Polyphenols herbal infusions BSTFA DSDME [8]

3 Melamine and cyanuric acid powdered milk BSTFA LLE [9]

4 Fluoxetine and norfluoxetine human plasma MBTFA LPME [10]

5 Fecal sterols fecal matter BSTFA SPE [11]

6 Quinine urine BSTFA+TMCS (99:1v/v) DLLME [15]

7 Endocrine disruptor chemicals wastewater BSTFA+TMCS (99:1v/v) DLLME [16]

8 3-phenoxybenzoic acid liver and blood BSTFA+TMCS (99:1v/v) MISPE-DLLME [17]

9 Alkylphenols environmental water 
samples BSTFA MASE and SBSE [18]

10 Alkylphenols and bisphenol A seawater samples BSTFA SPME [19]

11 Polycyclic aromatic hydrocarbons sediment samples MTBSTFA SWE and DLLME [20]

12 Endocrine disrupting chemicals water BSTFA+1%TMCS MEPS [21]

13 Mono and dicarboxylic acids ozonolysis of cyclic alkenes BSTFA LLE [22]

14 Chlorinated bisphenol A human plasma BSTFA SPME [23]

15 Benzophenone UV filters water BSTFA vortex assisted DLLME [24]

16 Triclosan wastewater and surface 
water TBDMS SPE [25]

17 Non-steroidal anti-inflammatory drugs water samples TBAHS ion-pair liquid-liquid 
extraction [3]

18 Acidic herbicides aqueous samples TBAC ion-pair hollow fiber-
protected LPME [4]

19 Linear and branched perfluorooctane sulfonate 
isomers biological samples TBAH SPE [5]

20 Pharmaceutical residues water TBAHS SPE [26]

21 Phenolic acids plasma TBAH ion-pair microextraction [27]

22 Chlorophenoxyacetic acids water TBAC USEME [28]

23 Linear alkylbenzenesulfonates aqueous samples TBAHS ion-pair-SPME [29]

24 Low molecular weight dicarboxylic acids atmospheric aerosols TBAH SPE [30]

25 Long chain fatty acids water TBAHS ion-pair dynamic LPME [31]

Table 1: Coupling of IPD with various extraction methods in literature.

SBSE: Stir Bar Sorptive Extraction; DSDME: Directly Suspended Droplet Microextraction; LLE: Liquid-Liquid Extraction; MBTFA: n-methyl-bis(trifluoroacetamide); 
LPME: Liquid-Phase Microextraction; SPE: Solid Phase Extraction; MASE: Membrane Assisted Solvent Extraction; SWE: Subcritical Water Extraction; MEPS: 
Microextraction by Packed Sorbents; TBDMS: tert-butyldimethylsilylated; USEME: Ultrasound Assisted Emulsification Microextraction.
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bis(trifluoroacetamide),  MBTFA  as injector-port derivatizing  agent 
[10]. In another study, Wu et al [11], has also investigated certain 
parameters like effect of solvents such as acetonitrile, acetone, 
dichloromethane, diethyl ether, ethyl acetate, hexane and tert-butyl 
methyl ether  and shown that dichloromethane giving the best 
derivatization efficiency after solid-phase extraction of fecal sterols 
from environmental water samples by IPS/GC-MS analysis. Based on 
the literature and usefulness of the IPS as an easy to use derivatization 
method, it has expanded its scope for analysis of polar analytes using 
GC-MS. 

DLLME-IPS
In recent years,  microextraction  techniques coupled 

with  different  derivatization  make  the analysis more 
efficient, sensitive, selective, economical and eco-friendly. 
Dispersive liquid-liquid  microextraction  (DLLME), a new 
microextraction  technique  introduced by  Assadi and co workers 
[12] has gained a promising place among the researchers to 
develop rapid and cost-effective sample preparation methods for 
the analytes of their interest and improve this technique thereupon. 
This method mainly  based on ternary  component  solvent system 
in which an appropriate mixture of  dispersant, extraction solvent 
(both miscible in each other) rapidly injected into an aqueous 
solution which enable  the formation  of  a cloudy solution (water/
dispersant/extraction solvent). This cloudy solution  has tiny 
droplets of extraction solvent dispersed  throughout the aqueous 
solution. The hydrophobic  analytes  are then enriched in the 
extraction solvent is  centrifuged, due to which,    high density 
extraction solvent accumulates at the bottom of the tube known as 
sedimented phase which can directly  injected into GC for analysis. 
Compared with SPME and SDME, the extraction time in DLLME is 
very less.  DLLME  has been widely applied for the analysis of 
organic analytes and metals from various complex matrices [13, 14].

An attempt has made by our group to couple  DLLME  with 
injector port  silylation  (IPS) which can enhance the scope 
of  DLLME  for the analysis of polar  analytes  at cheaper cost. This 
coupling enhances the use of  DLLME  and overcome several 
limitations of  in-vial  silylation. This coupling lessens the (a) time 
for  silylation  (less than a minute), (b) need of external anhydrous 
conditions, (c) use of toxic silylating reagent and the solvents used for 
extraction. The coupling of DLLME with IPS has successfully applied 
for extraction of quinine from urine samples and the sediment phase 
then  injected manually into GC-MS along with  BSTFA  containing 
1%  TMCS.  Thus, quinine was  derivatized  inside the hot GC-MS 
injector port instantaneously thus eliminating the lengthy reaction 
time needed in conventional  in-vial  silylation  [15]. The  DLLME-
IPS  also used  for the analysis of multi-class  analytes  like phenolic 
endocrine disruptors (PEDCs) in environmental water samples. This 
method added the advantage of automatic injection of both sample 
and  derivatizing  agent using an auto sampler which eliminates the 
need of injecting them manually into the GC [16]. In another study 
the DLLME-IPS has hyphenated with molecularly imprinted polymers 
(MIP) (has ability for selective picking of the analytes from the sample) 
for the quantitative determination of 3-phenoxybenzoic acid (3-PBA) 
from complex biological samples such as blood and liver. This has 
improved not only sensitivity but also enhanced the selectivity of 
the analysis. The analyte, 3-PBA has been extracted from biological 

samples using  molecularly  imprinted polymer (MIP) solid-phase 
extraction (MISPE) [17]. The DLLME-IPS-GC-MS approach has 
been shown in Figure 1.

Conclusion and Future Directions
Coupling of  DLLME  with IPS results in a rapid, economical, 

eco-friendly and sensitive analytical method. This coupling has 
enabled to analyze polar  analytes  by GC-MS. It is a first step in 
coupling the  microextractions  with injector port  derivatization  but 
need more such.  DLLME-IPS  has the potential to analyze multiple 
polar analytes  in single run due to the potential of  DLLME  as 
extraction/preconcentration  tool and ability of  silylation as an 
effective  derivatization  agent for most of the polar  analytes  which 
definitely expand the use of GC-MS for toxicological and/or clinical 
analysis. In future,  DLLME-IPS/GC-MS could be an alternative to 
study the polar analytes  in simple or complex matrices for several 
studies including untargeted metabolomics. The researchers should 
concentrate in this area of research so that the methods developed will 
be helpful for the routine analysis and generate more authentic data 
for regulatory purposes. These methods can also cut the burden on 
the analyst who is performing day-to-day analysis in the laboratory. 
Further, this approach reduces the use of toxic organic solvents for 
extraction and thus develops eco-friendly method, a step towards 
green chemistry.
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